Araştırma Makalesi
BibTex RIS Kaynak Göster

The rise and fall of L-spaces, II

Yıl 2021, , 7 - 24, 31.03.2021
https://doi.org/10.31197/atnaa.847835

Öz

In 2005, Ben-El-Mechaiekh, Chebbi, and Florenzano obtained a generalization of Ky Fan's 1984 KKM theorem on the intersection of a
family of closed sets on non-compact convex sets in a topological vector space. They also extended the Fan-Browder fixed point theorem
to multimaps on non-compact convex sets. Since then several groups of the L-space theorists introduced coercivity families and applied
them to L-spaces, H-spaces, etc. In this article, we show that better forms of such works can be deduced from a general KKM theorem
on abstract convex spaces in our previous works. Consequently, all of the known KKM theoretic results on L-spaces related coercivity
families are extended to corresponding better forms on abstract convex spaces.

This article is a continuation of our \cite{38} and a revised and extended version of \cite{34}.

Kaynakça

  • [1] N. Altwaijry, S. Ounaies, and S. Chebbi, Generalized convexity and applications to fixed points and equilibria, J. Fixed Point Theory Appl. (2018):3 https://doi.org/10.1007/s11784-018-0517-6
  • [2] H. Ben-El-Mechaiekh, Approximations and selections methods for set-valued maps and fixed point theory, Book Chapter, Research Gate, 05 Dec. 2016.
  • [3] H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano, and J.V. Llinares, Fixed point theorem without convexity, Working Paper 97-22 Economics Series, 11 April 1997, Departamento de Economia Universidad Carlos ill de Madrid CaIle Madrid.
  • [4] H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano, and J.V. Llinares, Abstract convexity and fixed points, J. Math. Anal.Appl. 222 (1998) 138–150.
  • [5] H. Ben-El-Mechaiekh, S. Chebbi, and M. Florenzano, A generalized KKMF principle, J. Math. Anal. Appl. 309 (2005) 583–590.
  • [6] S.Y. Chang, A generalization of KKM principle and its applications, Soochow J. Math. 15 (1989), 7-17.
  • [7] S. Chebbi, Minimax inequality and equilibria with a generalized coercivity, J. Appl. Anal. 12 (2006), 117–125.
  • [8] S. Chebbi, Intersection, fixed points and minimax inequalities with a generalized convexity in H-spaces, Arab J. Math. Sc. 12(1) (2006) 7–15.
  • [9] S. Chebbi, Some non-compact quasi-variational inequalities, Nonlinear Anal. 71(12) (2009) e1684–e1687.
  • [10] S. Chebbi, Intersection and minimax inequality with a generalized convexity in H-spaces, ResearchGate, 21 May 2015.
  • [11] S. Chebbi, P. Gourdel, and H. Hammami, A generalization of Fan’s matching theorem, J. Fixed Point Theory Appl. 9 (2011) 117–124.
  • [12] S. Chebbi and B. Samet, Noncompact equilibrium points for set-valued maps, Abstract Appl. Anal. 2014, Article ID 959612, 4pp. http://dx.doi.org/10.1155/2014/959612
  • [13] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961) 305–310.
  • [14] K. Fan, Fixed-point and related theorems for noncompact convex sets, [in: Game Theory and Related Topics (O. Moeshlin and D. Pallaschke, Eds.), pp.151–156, North-Holland, Amsterdam, 1979.
  • [15] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984) 519–537.
  • [16] P. Gourdel and H. Hammami, Applications of generalized Ky Fan’s matching theorem in minimax and variational inequality, 2007. ffhalshs-00204627f
  • [17] H. Hammami. A generalized FKKM theorem and variational inequality, 2007. ffhalshs-00204601ff
  • [18] C. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991) 341-357.
  • [19] B. Knaster, K. Kuratowski, und S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-Dimensionale Simplexe, Fund. Math. 14 (1929) 132–137.
  • [20] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983) 151-20l.
  • [21] S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (1999) 187–222.
  • [22] S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5 (2000) 67–79.
  • [23] S. Park, Remarks on KC-maps and KO-maps in abstract convex spaces, Nonlinear Anal. Forum 12(1) (2007) 29–40.
  • [24] S. Park, Examples of KC-maps and KO-maps on abstract convex spaces, Soochow J. Math. 33(3) (2007) 477–486.
  • [25] S. Park, A brief history of the KKM theory, RIMS Kôkyûroku, Kyoto Univ. 1643 (2009) 1–16.
  • [26] S. Park, Generalizations of the Nash equilibrium theorem in the KKM theory, Takahashi Legacy, Fixed Point Theory Appl., vol. 2010, Article ID 234706, 23pp. doi:10.1155 /2010/234706.
  • [27] S. Park, The KKM principle in abstract convex spaces: Equivalent formulations and applications, Nonlinear Anal. 73 (2010) 1028–1042.
  • [28] S. Park, A genesis of general KKM theorems for abstract convex spaces, J. Nonlinear Anal. Optim. 2 (2011) 133–146.
  • [29] S. Park, Remarks on certain coercivity in general KKM theorems, Nonlinear Anal. Forum 16 (2011) 1–10.
  • [30] S. Park, Applications of some basic theorems in the KKM theory [in: The series of papers on S. Park’s Contribution to the Development of Fixed Point Theory and KKM Theory], Fixed Point Theory Appl. vol.2011, 2011:98. DOI:10.1186/1687- 1812-2011-98.
  • [31] S. Park, Evolution of the 1984 KKM theorem of Ky Fan, Fixed Point Theory Appl. vol.2012, 2012:146. DOI:10.1186/1687- 1812-2012-146.
  • [32] S. Park, On some new Ky Fan type minimax inequalities in abstract convex spaces, Nonlinear Analysis and Convex Analysis (NACA 2011, Busan), II, pp. 141–161, Yokohama Publ., Yokohama, 2012.
  • [33] S. Park, A genesis of general KKM theorems for abstract convex spaces: Revisited, J. Nonlinear Anal. Optim. 4(1) (2013) 127–132.
  • [34] S. Park, Generalizations of the KKMF principle having coercing families, J. Nonlinear Anal. Optim. 4(2) (2013) 30–40.
  • [35] S. Park, Comments on “Some remarks on Park’s abstract convex spaces”, Nonlinear Anal. Forum 20 (2015) 161–165.
  • [36] S. Park, Some use of weak topologies in the KKM theory, RIMS Kôkyûroku, Kyoto Univ. 2065 (Aug. 31 - Sep. 2, 2016), Apr. 2018, 51–62.
  • [37] S. Park, On further examples of partial KKM spaces, J. Fixed Point Theory, 2019, 2019:10 (18 June, 2019) 1–18.
  • [38] S. Park, The rise and fall of L-spaces, Adv. Th. Nonlinear Anal. Appl. 4(3) (2020) 152–166.
  • [39] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. SNU 18 (1993) 1–21.
Yıl 2021, , 7 - 24, 31.03.2021
https://doi.org/10.31197/atnaa.847835

Öz

Kaynakça

  • [1] N. Altwaijry, S. Ounaies, and S. Chebbi, Generalized convexity and applications to fixed points and equilibria, J. Fixed Point Theory Appl. (2018):3 https://doi.org/10.1007/s11784-018-0517-6
  • [2] H. Ben-El-Mechaiekh, Approximations and selections methods for set-valued maps and fixed point theory, Book Chapter, Research Gate, 05 Dec. 2016.
  • [3] H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano, and J.V. Llinares, Fixed point theorem without convexity, Working Paper 97-22 Economics Series, 11 April 1997, Departamento de Economia Universidad Carlos ill de Madrid CaIle Madrid.
  • [4] H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano, and J.V. Llinares, Abstract convexity and fixed points, J. Math. Anal.Appl. 222 (1998) 138–150.
  • [5] H. Ben-El-Mechaiekh, S. Chebbi, and M. Florenzano, A generalized KKMF principle, J. Math. Anal. Appl. 309 (2005) 583–590.
  • [6] S.Y. Chang, A generalization of KKM principle and its applications, Soochow J. Math. 15 (1989), 7-17.
  • [7] S. Chebbi, Minimax inequality and equilibria with a generalized coercivity, J. Appl. Anal. 12 (2006), 117–125.
  • [8] S. Chebbi, Intersection, fixed points and minimax inequalities with a generalized convexity in H-spaces, Arab J. Math. Sc. 12(1) (2006) 7–15.
  • [9] S. Chebbi, Some non-compact quasi-variational inequalities, Nonlinear Anal. 71(12) (2009) e1684–e1687.
  • [10] S. Chebbi, Intersection and minimax inequality with a generalized convexity in H-spaces, ResearchGate, 21 May 2015.
  • [11] S. Chebbi, P. Gourdel, and H. Hammami, A generalization of Fan’s matching theorem, J. Fixed Point Theory Appl. 9 (2011) 117–124.
  • [12] S. Chebbi and B. Samet, Noncompact equilibrium points for set-valued maps, Abstract Appl. Anal. 2014, Article ID 959612, 4pp. http://dx.doi.org/10.1155/2014/959612
  • [13] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961) 305–310.
  • [14] K. Fan, Fixed-point and related theorems for noncompact convex sets, [in: Game Theory and Related Topics (O. Moeshlin and D. Pallaschke, Eds.), pp.151–156, North-Holland, Amsterdam, 1979.
  • [15] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984) 519–537.
  • [16] P. Gourdel and H. Hammami, Applications of generalized Ky Fan’s matching theorem in minimax and variational inequality, 2007. ffhalshs-00204627f
  • [17] H. Hammami. A generalized FKKM theorem and variational inequality, 2007. ffhalshs-00204601ff
  • [18] C. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991) 341-357.
  • [19] B. Knaster, K. Kuratowski, und S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-Dimensionale Simplexe, Fund. Math. 14 (1929) 132–137.
  • [20] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983) 151-20l.
  • [21] S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (1999) 187–222.
  • [22] S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5 (2000) 67–79.
  • [23] S. Park, Remarks on KC-maps and KO-maps in abstract convex spaces, Nonlinear Anal. Forum 12(1) (2007) 29–40.
  • [24] S. Park, Examples of KC-maps and KO-maps on abstract convex spaces, Soochow J. Math. 33(3) (2007) 477–486.
  • [25] S. Park, A brief history of the KKM theory, RIMS Kôkyûroku, Kyoto Univ. 1643 (2009) 1–16.
  • [26] S. Park, Generalizations of the Nash equilibrium theorem in the KKM theory, Takahashi Legacy, Fixed Point Theory Appl., vol. 2010, Article ID 234706, 23pp. doi:10.1155 /2010/234706.
  • [27] S. Park, The KKM principle in abstract convex spaces: Equivalent formulations and applications, Nonlinear Anal. 73 (2010) 1028–1042.
  • [28] S. Park, A genesis of general KKM theorems for abstract convex spaces, J. Nonlinear Anal. Optim. 2 (2011) 133–146.
  • [29] S. Park, Remarks on certain coercivity in general KKM theorems, Nonlinear Anal. Forum 16 (2011) 1–10.
  • [30] S. Park, Applications of some basic theorems in the KKM theory [in: The series of papers on S. Park’s Contribution to the Development of Fixed Point Theory and KKM Theory], Fixed Point Theory Appl. vol.2011, 2011:98. DOI:10.1186/1687- 1812-2011-98.
  • [31] S. Park, Evolution of the 1984 KKM theorem of Ky Fan, Fixed Point Theory Appl. vol.2012, 2012:146. DOI:10.1186/1687- 1812-2012-146.
  • [32] S. Park, On some new Ky Fan type minimax inequalities in abstract convex spaces, Nonlinear Analysis and Convex Analysis (NACA 2011, Busan), II, pp. 141–161, Yokohama Publ., Yokohama, 2012.
  • [33] S. Park, A genesis of general KKM theorems for abstract convex spaces: Revisited, J. Nonlinear Anal. Optim. 4(1) (2013) 127–132.
  • [34] S. Park, Generalizations of the KKMF principle having coercing families, J. Nonlinear Anal. Optim. 4(2) (2013) 30–40.
  • [35] S. Park, Comments on “Some remarks on Park’s abstract convex spaces”, Nonlinear Anal. Forum 20 (2015) 161–165.
  • [36] S. Park, Some use of weak topologies in the KKM theory, RIMS Kôkyûroku, Kyoto Univ. 2065 (Aug. 31 - Sep. 2, 2016), Apr. 2018, 51–62.
  • [37] S. Park, On further examples of partial KKM spaces, J. Fixed Point Theory, 2019, 2019:10 (18 June, 2019) 1–18.
  • [38] S. Park, The rise and fall of L-spaces, Adv. Th. Nonlinear Anal. Appl. 4(3) (2020) 152–166.
  • [39] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. SNU 18 (1993) 1–21.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Sehie Park Bu kişi benim

Yayımlanma Tarihi 31 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster