Araştırma Makalesi
BibTex RIS Kaynak Göster

Remarks on solutions to the functional equations of the radical type

Yıl 2017, Cilt: 1 Sayı: 2, 125 - 135, 20.12.2017
https://doi.org/10.31197/atnaa.379095

Öz

This is an expository paper containing remarks on solutions to some functional equations of a form, that could be called of the radical type. Simple natural examples of them are the following two functional equations fn √xn + yn= f(x) + f(y),f n √xn + yn+ fn p|xn −yn|= 2f(x) + 2f(y) considered recently in several papers, for real functions and with given positive integer n, in connection with the notion of Ulam (or Hyers-Ulam) stability. We provide a general method allowing to determine solutions to them.

Kaynakça

  • J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
  • L. Aiemsomboon, W. Sintunavarat, On a new type of stability of a radical quadratic functional equation using Brzdek’s fixed point theorem, Acta Math. Hungar. 151 (2017), 35–46.
  • Z. Alizadeh, A.G. Ghazanfari, On the stability of a radical cubic functional equation in quasi- -spaces, J. Fixed Point Th. Appl. 18 (2016), 843–853.
  • N. Brillouët-Belluot, J. Brzdek, K. Cieplinski, On some recent developments in Ulam’s type stability, Abstr. Appl. Anal. 2012, Art. ID 716936, 41 pp.
  • Y.J. Cho, M. Eshaghi Gordji, S.S. Kim, Y. Yang, On the stability of radical functional equations in quasi- -normed spaces, Bull. Korean Math. Soc. 51 (2014), 1511–1525.
  • J. Dhombres, Some Aspects of Functional Equations, Chulalongkorn University Press, Bangkok, 1979.
  • I. EL-Fassi, Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces, J. Math. Anal. Appl. 455 (2017), 2001–2013.
  • I. EL-Fassi, On a new type of hyperstability for radical cubic functional equation in non-archimedean metric spaces, Results Math. 72 (2017), 991–1005.
  • H. Khodaei, M. Eshaghi Gordji, S.S. Kim, Y.J. Cho, Approximation of radical functional equations related to quadratic and quartic mappings, J. Math. Anal. Appl. 395 (2012), 284–297.
  • S.S. Kim, Y.J. Cho, M. Eshaghi Gordji, On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations, J. Inequal. Appl. 186 (2012), pp. 13.
  • M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Panstwowe Wydawnictwo Naukowe & Uniwersytet Slaski, Warszawa–Kraków–Katowice, 1985.
  • E. Movahednia, H. Mehrannia, Fixed point method and Hyers-Ulam-Rassias stability of a radical functional equation in various spaces, Intl. Res. J. Appl. Basic. Sci. 5 (8) (2013), 1067–1072.
  • P. Narasimman, K. Ravi, S. Pinelas, Stability of Pythagorean mean functional equation, Global J. Math. 4 (2015), 398–411.
  • J. Olko, M. Piszczek (eds.), Report of meeting: 16th International Conference on Functional Equations and Inequalities, Bedlewo, Poland, May 17–23, 2015, Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 163–202.
  • S. Phiangsungnoen, On stability of radical quadratic functional equation in random normed spaces, IEEE Xplore Digital Library, 2015 International Conference on Science and Technology (TICST), 450–455. DOI: 10.1109/TICST.2015.7369399
Yıl 2017, Cilt: 1 Sayı: 2, 125 - 135, 20.12.2017
https://doi.org/10.31197/atnaa.379095

Öz

Kaynakça

  • J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
  • L. Aiemsomboon, W. Sintunavarat, On a new type of stability of a radical quadratic functional equation using Brzdek’s fixed point theorem, Acta Math. Hungar. 151 (2017), 35–46.
  • Z. Alizadeh, A.G. Ghazanfari, On the stability of a radical cubic functional equation in quasi- -spaces, J. Fixed Point Th. Appl. 18 (2016), 843–853.
  • N. Brillouët-Belluot, J. Brzdek, K. Cieplinski, On some recent developments in Ulam’s type stability, Abstr. Appl. Anal. 2012, Art. ID 716936, 41 pp.
  • Y.J. Cho, M. Eshaghi Gordji, S.S. Kim, Y. Yang, On the stability of radical functional equations in quasi- -normed spaces, Bull. Korean Math. Soc. 51 (2014), 1511–1525.
  • J. Dhombres, Some Aspects of Functional Equations, Chulalongkorn University Press, Bangkok, 1979.
  • I. EL-Fassi, Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces, J. Math. Anal. Appl. 455 (2017), 2001–2013.
  • I. EL-Fassi, On a new type of hyperstability for radical cubic functional equation in non-archimedean metric spaces, Results Math. 72 (2017), 991–1005.
  • H. Khodaei, M. Eshaghi Gordji, S.S. Kim, Y.J. Cho, Approximation of radical functional equations related to quadratic and quartic mappings, J. Math. Anal. Appl. 395 (2012), 284–297.
  • S.S. Kim, Y.J. Cho, M. Eshaghi Gordji, On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations, J. Inequal. Appl. 186 (2012), pp. 13.
  • M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Panstwowe Wydawnictwo Naukowe & Uniwersytet Slaski, Warszawa–Kraków–Katowice, 1985.
  • E. Movahednia, H. Mehrannia, Fixed point method and Hyers-Ulam-Rassias stability of a radical functional equation in various spaces, Intl. Res. J. Appl. Basic. Sci. 5 (8) (2013), 1067–1072.
  • P. Narasimman, K. Ravi, S. Pinelas, Stability of Pythagorean mean functional equation, Global J. Math. 4 (2015), 398–411.
  • J. Olko, M. Piszczek (eds.), Report of meeting: 16th International Conference on Functional Equations and Inequalities, Bedlewo, Poland, May 17–23, 2015, Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 163–202.
  • S. Phiangsungnoen, On stability of radical quadratic functional equation in random normed spaces, IEEE Xplore Digital Library, 2015 International Conference on Science and Technology (TICST), 450–455. DOI: 10.1109/TICST.2015.7369399
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Janusz Brzdek Bu kişi benim

Yayımlanma Tarihi 20 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 1 Sayı: 2

Kaynak Göster