In this paper we treat the 3D stochastic incompressible generalized
rotating magnetohydrodynamics equations. By using littlewood-Paley
decomposition and Itô integral, we establish the global well-posedness result for small initial data $(u_{0}, b_{0})$ belonging in the critical Fourier-Besov-Morrey spaces
$\mathcal{F\dot{N}}_{2,\lambda,q}^{\frac{5}{2}-2 \alpha +\frac{\lambda}{2}}(\mathbb{R}^{3})$. In addition, the proof of local existence is also founded on a priori estimates of the stochastic parabolic equation and the iterative contraction method.
Stochastic magnetohydrodynamics equation well-posedness Fourier_Besov_Morrey spaces
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Articles |
Yazarlar | |
Yayımlanma Tarihi | 30 Aralık 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 6 Sayı: 4 |