Araştırma Makalesi
BibTex RIS Kaynak Göster

Kanser Tedavisinde Biyo-Isı Transferi: Monte Carlo Simülasyonu Kullanılarak Hipertermi Destekli Radyoterapi İçin Matematiksel Bir Çerçeve

Yıl 2025, Cilt: 1 Sayı: 2, 96 - 109, 25.12.2025

Öz

Bu çalışma, kanser hücrelerine yönelik radyasyon tedavisi (radyoterapi) sırasında hipertermi yoluyla gerçekleşen biyoısı transferini özel olarak incelemeyi amaçlamaktadır. Bu inceleme, tedavi sonuçlarını optimize etmek, kanser hücrelerini yok etmek ve sağlıklı dokular üzerindeki yan etkileri (toksisiteyi) önlemek açısından önem taşımaktadır. Tedavi sırasında gerçekleşen ısı transferi sürecinin anlaşılması, hekimlerin tedavi etkilerini maksimize etmesine, uygulanan dozlara bağlı tepkileri öngörmesine ve yan etkileri en aza indirmesine yardımcı olabilir. X-ışını kullanan radyoterapi ile hiperterminin kombinasyonu, kanser hücrelerinin tedavisinde kullanılan yöntemler arasında özel olarak araştırılmıştır. Bu araştırma, her iki yöntemin avantajlarını bir araya getirmeyi ve bunlarla ilişkili istenmeyen yan etkileri azaltmayı hedeflemektedir. İki hipertermi darbesi arasındaki dinlenme süresi boyunca, biyolojik sistem uygulanan yüksek sıcaklıklara (43°C, 45°C, 47°C) karşı tepki vermeye çalışırken, radyoterapi dozu uygulanmaktadır. Ana fikir şudur: Kanser hücrelerinin ısıtılması, onları radyasyon tedavisine karşı daha hassas hale getirir; bu da tedavi süresini kısaltabilir, yan etkileri azaltabilir ve hayatta kalma oranlarını artırabilir. Yapılan literatür taramasına göre, kanser hücrelerinin artışı daha fazla doku hasarına yol açmaktadır. Bu bağlamda, Arrhenius modeli kullanılarak sıcaklık ve ısıya maruz kalma süresinin artmasının, kanser hücrelerine verilen hasarı artırdığı gösterilmiştir. Bu model, sıcaklık ve maruziyet süresi parametrelerini, geri dönüşü olmayan doku hasarını yansıtan tek bir parametreye (Ω) dönüştürmektedir. Son olarak, Pennes’in biyoısı denklemini çözmek için Monte Carlo Simülasyonu kullanılarak radyoterapi tedavisine yönelik genel bir biyoısı transferi matematiksel çerçevesi sunulmuştur.

Kaynakça

  • Mee, T., Kirkby, N. F., Defourny, N. N., Kirkby, K. J. and Burnet, N. G., (2023). The use of radiotherapy, surgery and chemotherapy in the curative treatment of cancer: results from the FORTY (Favourable Outcomes from RadioTherapY) project, British Journal of Radiology, 96, 1152.
  • Lukácsi, S., Munkácsy, G. and Győrffy, B., (2024). Harnessing Hyperthermia: Molecular, Cellular, and Immunological Insights for Enhanced Anticancer Therapies, Integrative Cancer Therapies. 15347354241242094.
  • Yang, Y., Huangfu, L., Li, H., & Yang, D. (2023). Research progress of hyperthermia in tumor therapy by influencing metabolic reprogramming of tumor cells. International Journal of Hyperthermia, 40(1) 2270654.
  • Kok HP, Herrera TD, Crezee J. (2024). Biological treatment evaluation in thermoradiotherapy: application in cervical cancer patients. Strahlentherapie and Onkologie. 200 (6), 512-522.
  • Datta, N. R., Rogers, S., Ordóñez, S. G., Puric, E., & Bodis, S. (2016). Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis. International Journal of Hyperthermia, 32(1), 31–40.
  • Datta, N.R., Puric, E., Klingbiel, D., Gomez, S., Bodis, S., (2016). Hyperthermia and Radiation Therapy in Locoregional Recurrent Breast Cancers: A Systematic Review and Meta-analysis. International Journal of Radiation Oncology, Biology, Physics 94 (5), 1073-1087.
  • Van Dieren, L., Quisenaerts, T., Licata, M., Beddok, A., Lellouch, A. G., Ysebaert, D., Saldien, V., Peeters, M., & Gorbaslieva, I. (2024). Combined Radiotherapy and Hyperthermia: A Systematic Review of Immunological Synergies for Amplifying Radiation-Induced Abscopal Effects. Cancers, 16(21), 3656.
  • Issels RD, Lindner LH, Verweij J, et al. (2018). Effect of Neoadjuvant Chemotherapy Plus Regional Hyperthermia on Long-term Outcomes Among Patients With Localized High-Risk Soft Tissue Sarcoma: The EORTC 62961-ESHO 95 Randomized Clinical Trial. JAMA Oncol. 4(4), 483–492.
  • Zachou, M.-E., Spyratou, E., Lagopati, N., Platoni, K., & Efstathopoulos, E. P. (2025). Recent Progress of Nanomedicine for the Synergetic Treatment of Radiotherapy (RT) and Photothermal Treatment (PTT). Cancers, 17 (14), 2295.
  • Arslan, S. A., Ozdemir, N., Sendur, M. A., et al. (2017). Hyperthermia and Radiotherapy Combination for Locoregional Recurrences of Breast Cancer: A Review. Breast Cancer Management, 6(4), 117–126.
  • Deniz, G. I., Can, A. and Tansan, S. (2023). Chemotherapy and radiofrequency hyperthermia (oncothermia) in the treatment of metastatic colorectal cancer., Journal of Clinical Oncology, 41 (16), e15569–e15569.
  • Pyrexar Medical, (2025, December, 20). Randomized Clinical Hyperthermia Studies, [Online]. Available: https://www.pyrexar.com/clinical/clinical-trials
  • Therapeutic Integration of Hyperthermia in Modern Oncology: A Critical Analysis of Phase III Trials and Meta-Analyses (OS, DFS, CR Endpoints), (2025, December, 20) [Online]. Available: https://andromedichyperthermia.com/oncologic-hyperthermia-phase-3-trials/
  • Dombrovsky, L. A. (2022). Laser-Induced Thermal Treatment of Superficial Human Tumors: An Advanced Heating Strategy and Non-Arrhenius Law for Living Tissues, Frontiers in Thermal Engineering, 1, 807083.
  • Open-Source Light Transport Simulator, (2025, December, 20). MCX. [Online]. Available: https://mcx.space/
  • Wegner, M., Krause, D. (2024). 3D printed phantoms for medical imaging: recent developments and challenges. Journal of Mechanical Science and Technology 38, 4537–4543.
  • Pearce, J.A. (2013). Comparative analysis of mathematical models of cell death and thermal damage processes, International Journal of Hyperthermia, 29 (4), 262–280.
  • Gholami, S., Nedaie, H., Longo, F., Ay, M., Dini, S. and Meigooni, A. (2017). Grid block design based on monte carlo simulated dosimetry, the linear quadratic and Hug-Kellerer radiobiological models, Journal of Medical Physics, 42 (4), 213–221.
  • Makar, J. (2024). Pennes Bioheat Equation, West Chester University of Pennsylvania [Online]. Available: https://www.wcupa.edu/sciences-mathematics/mathematics/documents/S24_Makar_Bioheat_Research_Finalized.pdf
  • Pennes, H. H. (1948). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, 1 (2), 93-122.
  • National Institute of Health, (2025, December, 20). Hyperthermia to Treat Cancer. [Online]. Available: https://www.cancer.gov/about-cancer/treatment/types/hyperthermia
  • Patterson Institute for Integrative Oncology Research, (2024). Artemisinin and Its Derivatives in Cancer Care: Healthcare Provider Resource, CCNM. [Online]. Available: https://ccnm.edu/sites/default/files/2024-05/Artesunate-professional-resource-January2024.pdf
  • Sherief, H. H., Zaky, M. F., Abbas, M. F., and Mahrous, S. A. (2024). Mathematical modeling of heat transfer in tissues with skin tumor during thermotherapy, PLoS One, 19 (5) 0298256.
  • Gas, P. and Kurgan, E. (2018). Evaluation of thermal damage of hepatic tissue during thermotherapy based on the arrhenius model, 2018 Progress in Applied Electrical Engineering, PAEE 2018, 1-4.

Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation

Yıl 2025, Cilt: 1 Sayı: 2, 96 - 109, 25.12.2025

Öz

This study explores bio-heat transfer during radiotherapy combined with hyperthermia, with the goal of improving cancer treatment by maximizing tumor destruction while minimizing harm to surrounding healthy tissue. Understanding thermal dynamics during therapy allows clinicians to enhance treatment effectiveness, anticipate biological responses based on dose parameters, and reduce side effects. In this work, we focus on the synergistic use of hyperthermia and X-ray radiotherapy. During short recovery periods between hyperthermia pulses—when tissue responds to elevated temperatures (43 °C, 45 °C, 47 °C)—radiation is delivered. The central hypothesis is that heating tumor tissue increases its radiosensitivity, potentially shortening treatment time and improving outcomes. Evidence from current literature supports this synergy, showing that higher temperatures amplify cellular damage. To quantify this effect, we applied the Arrhenius damage model, which converts temperature and exposure duration into a single thermal damage parameter (Ω) representing irreversible tissue injury. Finally, we developed a mathematical framework to simulate this process, using Monte Carlo photon transport to generate spatial heat sources and solving Pennes’ bio-heat equation to model heat transfer across layered biological tissue.

Etik Beyan

As the author of this paper, I declare that I conducted this research, and no ethical issues or review committee were required.

Destekleyen Kurum

Gaziantep University

Teşekkür

Thanks to my supervisor, Prof. Dr. Recep YUMURTAS

Kaynakça

  • Mee, T., Kirkby, N. F., Defourny, N. N., Kirkby, K. J. and Burnet, N. G., (2023). The use of radiotherapy, surgery and chemotherapy in the curative treatment of cancer: results from the FORTY (Favourable Outcomes from RadioTherapY) project, British Journal of Radiology, 96, 1152.
  • Lukácsi, S., Munkácsy, G. and Győrffy, B., (2024). Harnessing Hyperthermia: Molecular, Cellular, and Immunological Insights for Enhanced Anticancer Therapies, Integrative Cancer Therapies. 15347354241242094.
  • Yang, Y., Huangfu, L., Li, H., & Yang, D. (2023). Research progress of hyperthermia in tumor therapy by influencing metabolic reprogramming of tumor cells. International Journal of Hyperthermia, 40(1) 2270654.
  • Kok HP, Herrera TD, Crezee J. (2024). Biological treatment evaluation in thermoradiotherapy: application in cervical cancer patients. Strahlentherapie and Onkologie. 200 (6), 512-522.
  • Datta, N. R., Rogers, S., Ordóñez, S. G., Puric, E., & Bodis, S. (2016). Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis. International Journal of Hyperthermia, 32(1), 31–40.
  • Datta, N.R., Puric, E., Klingbiel, D., Gomez, S., Bodis, S., (2016). Hyperthermia and Radiation Therapy in Locoregional Recurrent Breast Cancers: A Systematic Review and Meta-analysis. International Journal of Radiation Oncology, Biology, Physics 94 (5), 1073-1087.
  • Van Dieren, L., Quisenaerts, T., Licata, M., Beddok, A., Lellouch, A. G., Ysebaert, D., Saldien, V., Peeters, M., & Gorbaslieva, I. (2024). Combined Radiotherapy and Hyperthermia: A Systematic Review of Immunological Synergies for Amplifying Radiation-Induced Abscopal Effects. Cancers, 16(21), 3656.
  • Issels RD, Lindner LH, Verweij J, et al. (2018). Effect of Neoadjuvant Chemotherapy Plus Regional Hyperthermia on Long-term Outcomes Among Patients With Localized High-Risk Soft Tissue Sarcoma: The EORTC 62961-ESHO 95 Randomized Clinical Trial. JAMA Oncol. 4(4), 483–492.
  • Zachou, M.-E., Spyratou, E., Lagopati, N., Platoni, K., & Efstathopoulos, E. P. (2025). Recent Progress of Nanomedicine for the Synergetic Treatment of Radiotherapy (RT) and Photothermal Treatment (PTT). Cancers, 17 (14), 2295.
  • Arslan, S. A., Ozdemir, N., Sendur, M. A., et al. (2017). Hyperthermia and Radiotherapy Combination for Locoregional Recurrences of Breast Cancer: A Review. Breast Cancer Management, 6(4), 117–126.
  • Deniz, G. I., Can, A. and Tansan, S. (2023). Chemotherapy and radiofrequency hyperthermia (oncothermia) in the treatment of metastatic colorectal cancer., Journal of Clinical Oncology, 41 (16), e15569–e15569.
  • Pyrexar Medical, (2025, December, 20). Randomized Clinical Hyperthermia Studies, [Online]. Available: https://www.pyrexar.com/clinical/clinical-trials
  • Therapeutic Integration of Hyperthermia in Modern Oncology: A Critical Analysis of Phase III Trials and Meta-Analyses (OS, DFS, CR Endpoints), (2025, December, 20) [Online]. Available: https://andromedichyperthermia.com/oncologic-hyperthermia-phase-3-trials/
  • Dombrovsky, L. A. (2022). Laser-Induced Thermal Treatment of Superficial Human Tumors: An Advanced Heating Strategy and Non-Arrhenius Law for Living Tissues, Frontiers in Thermal Engineering, 1, 807083.
  • Open-Source Light Transport Simulator, (2025, December, 20). MCX. [Online]. Available: https://mcx.space/
  • Wegner, M., Krause, D. (2024). 3D printed phantoms for medical imaging: recent developments and challenges. Journal of Mechanical Science and Technology 38, 4537–4543.
  • Pearce, J.A. (2013). Comparative analysis of mathematical models of cell death and thermal damage processes, International Journal of Hyperthermia, 29 (4), 262–280.
  • Gholami, S., Nedaie, H., Longo, F., Ay, M., Dini, S. and Meigooni, A. (2017). Grid block design based on monte carlo simulated dosimetry, the linear quadratic and Hug-Kellerer radiobiological models, Journal of Medical Physics, 42 (4), 213–221.
  • Makar, J. (2024). Pennes Bioheat Equation, West Chester University of Pennsylvania [Online]. Available: https://www.wcupa.edu/sciences-mathematics/mathematics/documents/S24_Makar_Bioheat_Research_Finalized.pdf
  • Pennes, H. H. (1948). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, 1 (2), 93-122.
  • National Institute of Health, (2025, December, 20). Hyperthermia to Treat Cancer. [Online]. Available: https://www.cancer.gov/about-cancer/treatment/types/hyperthermia
  • Patterson Institute for Integrative Oncology Research, (2024). Artemisinin and Its Derivatives in Cancer Care: Healthcare Provider Resource, CCNM. [Online]. Available: https://ccnm.edu/sites/default/files/2024-05/Artesunate-professional-resource-January2024.pdf
  • Sherief, H. H., Zaky, M. F., Abbas, M. F., and Mahrous, S. A. (2024). Mathematical modeling of heat transfer in tissues with skin tumor during thermotherapy, PLoS One, 19 (5) 0298256.
  • Gas, P. and Kurgan, E. (2018). Evaluation of thermal damage of hepatic tissue during thermotherapy based on the arrhenius model, 2018 Progress in Applied Electrical Engineering, PAEE 2018, 1-4.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomekanik
Bölüm Araştırma Makalesi
Yazarlar

Tuka Fattal 0009-0007-5413-6148

Birnur Bozdoğan 0000-0003-0314-837X

Recep Yumrutaş 0000-0001-9006-198X

Gönderilme Tarihi 27 Ekim 2025
Kabul Tarihi 10 Aralık 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 2

Kaynak Göster

APA Fattal, T., Bozdoğan, B., & Yumrutaş, R. (2025). Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi, 1(2), 96-109.
AMA Fattal T, Bozdoğan B, Yumrutaş R. Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation. ATUJSCIENCE. Aralık 2025;1(2):96-109.
Chicago Fattal, Tuka, Birnur Bozdoğan, ve Recep Yumrutaş. “Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation”. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi 1, sy. 2 (Aralık 2025): 96-109.
EndNote Fattal T, Bozdoğan B, Yumrutaş R (01 Aralık 2025) Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi 1 2 96–109.
IEEE T. Fattal, B. Bozdoğan, ve R. Yumrutaş, “Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation”, ATUJSCIENCE, c. 1, sy. 2, ss. 96–109, 2025.
ISNAD Fattal, Tuka vd. “Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation”. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi 1/2 (Aralık2025), 96-109.
JAMA Fattal T, Bozdoğan B, Yumrutaş R. Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation. ATUJSCIENCE. 2025;1:96–109.
MLA Fattal, Tuka vd. “Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation”. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi, c. 1, sy. 2, 2025, ss. 96-109.
Vancouver Fattal T, Bozdoğan B, Yumrutaş R. Bio-Heat Transfer in Cancer Treatment: A Mathematical Framework for Hyperthermia-Assisted Radiotherapy Using Monte Carlo Simulation. ATUJSCIENCE. 2025;1(2):96-109.