ATTRACTIVE APPROACHES in DRUG DELIVERY: BIO-BASED CARRIERS for siRNA TARGETING
Yıl 2018,
Cilt: 7 Sayı: 1, 74 - 89, 28.02.2018
Zülal Yalınca
,
Şükrü Tüzmen
Öz
Functional
characterization of genes can be determined by disruption of gene expression.
This provides powerful approach in designing novel treatment strategies. RNA
interference (RNAi) is a natural phenomenon that can aid in the study of
post-transcriptional regulation of genes. This mechanism can be stimulated via
introduction of double stranded RNA (dsRNA) in a cell. Synthetic short/small interfering
RNAs (siRNA) can be utilized to trigger down-regulation of desired genes via
transfecting into mammalian cells. Recently, utilization of bio-based polymers
has been an attractive approach in drug delivery for medical applications. This
review article describes the advantages of exploiting bio-based polymeric
carriers for siRNA targeting, as bio-therapeutics. Here, we report the current
developments, safety and delivery of bio-based siRNAs via polymeric carriers.
Additionally, cancer genetics and metabolic disorders including obesity and
diabetes pertaining to the progress in clinical applications have been
highlighted.
Kaynakça
- [1]. Wang X, Wang YQ, Chen Z, Shin DM: Advances of Cancer Therapy by Nanotechnology. Cancer Research and Treatment; 2009, 41:1-11.
[2]. Chapman EJ, Carrington JC: Specialization and evolution of endogenous small RNA pathways. Nature Reviews Genetics; 2007, 8:884-896.
[3]. Lee SJ, Son S, Yhee JY, Choi K, Kwon IC, Kim SH, Kim K: Structural modification of siRNA for efficient gene silencing. Biotechnol Adv.: 2013, 31:491-503.
[4]. Lee SJ, Kim MJ, Kwon IC, Roberts TM: Delivery strategies and potential targets for siRNA in major cancer types. Adv. Drug Deliver. Rev.; 2016, 104:2-15.
[5]. Tuzmen S, Tuzmen P, Arora S, Mousses S, Azorsa D: RNAi-based functional pharmacogenomics. Methods Mol. Biol.; 2011, 700:271-290.
[6]. Kang S, Hong YS: RNA interference in infectious tropical diseases. Korean Journal of Parasitology; 2008, 46:1-15.
[7]. Ding SW, Voinnet O: Antiviral immunity directed by small RNAs. Cell; 2007, 130:413-426.
[8]. Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM: The evolution of RNAi as a defence against viruses and transposable elements. Philosophical Transactions of the Royal Society B-Biological Sciences 2009, 364:99-115.
[9]. Saurabh S, Vidyarthi AS, Prasad D: RNA interference: concept to reality in crop improvement. Planta; 2014, 239:543-564.
[10]. Tijsterman M, Plasterk RHA: Dicers at RISC: The mechanism of RNAi. Cell; 2004, 117:1-3.
[11]. Elbashir SM, Lendeckel W, Tuschl T: RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes & Development; 2001, 15:188-200.
[12]. Xu CF, Wang J: Delivery systems for siRNA drug development in cancer therapy. Asian Journal of Pharmaceutical Sciences; 2015, 10:1-12.
[13]. Basu GD, Azorsa DO, Kiefer JA, Rojas AM, Tuzmen S, Barrett MT, Trent JM, Kallioniemi O, Mousses S: Functional evidence implicating S100P in prostate cancer progression. Int. J. Cancer; 2008, 123:330-339.
[14]. Savas S, Azorsa DO, Jarjanazi H, Ibrahim-Zada I, Gonzales IM, Arora S, Henderson MC, Choi YH, Briollais L, Ozcelik H, Tuzmen S: NCI60 Cancer Cell Line Panel Data and RNAi Analysis Help Identify EAF2 as a Modulator of Simvastatin and Lovastatin Response in HCT-116 Cells. Plos One; 2011, 6.
[15]. Sarett SM, Nelson CE, Duvall CL: Technologies for controlled, local delivery of siRNA. J. Control Release; 2015, 218:94-113.
[16]. Conde J, Ambrosone A, Hernandez Y, Tian FR, McCully M, Berry CC, Baptista PV, Tortiglione C, de la Fuente JM: 15 years on siRNA delivery: Beyond the State-of-the-Art on inorganic nanoparticles for RNAi therapeutics. Nano Today; 2015, 10:421-450.
[17]. Robb GB, Rana TM: RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol. Cell; 2007, 26:523-537.
[18]. Meng H, Mai WX, Zhang HY, Xue M, Xia T, Lin SJ, Wang X, Zhao Y, Ji ZX, Zink JI, Nel AE: Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer in Vitro and in Vivo. Acs Nano; 2013, 7:994-1005.
[19]. Resnier P, Montier T, Mathieu V, Benoit JP, Passirani C: A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials; 2013, 34:6429-6443.
[20]. Mittal V: Improving the efficiency of RNA interference in mammals. Nature Reviews Genetics; 2004, 5:355-365.
[21]. Seyhan AA: RNAi: a potential new class of therapeutic for human genetic disease. Hum. Genet.; 2011, 130:583-605.
[22]. Bumcrot D, Manoharan M, Koteliansky V, Sah DWY: RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology; 2006, 2:711-719.
[23]. Seyhan AA, Alizadeh BN, Lundstrom K, Johnston BH: RNA interference-mediated inhibition of semliki forest virus replication in mammalian cells. Oligonucleotides; 2007, 17:473-484.
[24]. Son Aydin TS, Hizel C: Designing and Implementing Pharmacogenomics Study: Appropriateness and Validation of Pharmacogenomics. In Omics for Personalized Medicine,. Springer; 2013: 97-122
[25]. Tüzmen S, Azorsa D.,Weaver D., Caplen N., Kallioniemi O., Mousses S: Validation of siRNA knockdowns by real-time quantitative PCR. International qPCR Symposium and Application Workshop; 2004.
[26]. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BRG: Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol.; 2003, 5:834-839.
[27]. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, et al: Position-specific chemical modification of siRNAs reduces "off-target'' transcript silencing. Rna-a Publication of the Rna Society; 2006, 12:1197-1205.
[28]. Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K, Leake D, Marshall WS, Khvorova A: Off-target effects by siRNA can induce toxic phenotype. Rna-a Publication of the Rna Society; 2006, 12:1188-1196.
[29]. Naito Y, Yamada T, Ui-Tei K, Morishita S, Saigo K: siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res.; 2004, 32:W124-W129.
[30]. Gandhi NS, Tekade RK, Chougule MB: Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances. J. Control Release; 2014, 194:238-256.
[31]. Reischl D, Zimmer A: Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine-Nanotechnology Biology and Medicine; 2009, 5:8-20.
[32]. Kanasty R, Dorkin JR, Vegas A, Anderson D: Delivery materials for siRNA therapeutics. Nature Materials; 2013, 12:967-977.
[33]. Whitehead KA, Langer R, Anderson DG: Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery; 2009, 8:129-138.
[34]. Conde J, Arnold CE, Tian FR, Artzi N: RNAi nanomaterials targeting immune cells as an anti-tumor therapy: the missing link in cancer treatment? Materials Today; 2016, 19:29-43.
[35]. Dominska M, Dykxhoorn DM: Breaking down the barriers: siRNA delivery and endosome escape. J. CELL SCI.; 2010, 123:1183-1189.
[36]. Marques JT, Williams BRG: Activation of the mammalian immune system by siRNAs. Nature Biotechnol.; 2005, 23:1399-1405.
[37]. Gomes-da-Silva LC, Simoes S, Moreira JN: Challenging the future of siRNA therapeutics against cancer: the crucial role of nanotechnology. Cell. Mol. Life Sci.; 2014, 71:1417-1438.
[38]. Castanotto D, Rossi JJ: The promises and pitfalls of RNA-interference-based therapeutics. Nature; 2009, 457:426-433.
[39]. Philipp A, Zhao XB, Tarcha P, Wagner E, Zintchenko A: Hydrophobically Modified Oligoethylenimines as Highly Efficient Transfection Agents for siRNA Delivery. Bioconjugate Chem.; 2009, 20:2055-2061.
[40]. Bruno K: Using drug-excipient interactions for siRNA delivery. Adv. Drug Deliver. Rev.; 2011, 63:1210-1226.
[41]. Wang J, Lu Z, Wientjes MG, Au JLS: Delivery of siRNA Therapeutics: Barriers and Carriers. Aaps Journa;l 2010, 12:492-503.
[42]. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK: RNA interference in the clinic: challenges and future directions. Nature Reviews Cancer; 2011, 11:59-67.
[43]. Bora RS, Gupta D, Mukkur TKS, Saini KS: RNA interference therapeutics for cancer: Challenges and opportunities (Review). Molecular Medicine Reports; 2012, 6:9-15.
[44]. Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J: Going beyond the liver: Progress and challenges of targeted delivery of siRNA therapeutics. J. Control Release; 2015, 203:1-15.
[45]. Nimesh S, Gupta N, Chandra R: Strategies and advances in nanomedicine for targeted siRNA delivery. Nanomedicine; 2011, 6:729-746.
[46]. Krebs MD, Alsberg E: Localized, Targeted, and Sustained siRNA Delivery. Chem-Eur. J.; 2011, 17:3054-3062.
[47]. Vicentini F, Borgheti-Cardoso LN, Depieri LV, Mano DD, Abelha TF, Petrilli R, Bentley M: Delivery Systems and Local Administration Routes for Therapeutic siRNA. Pharmaceut. Res.; 2013, 30:915-931.
[48]. Larson SD, Jackson LN, Chen LA, Rychahou PG, Evers BM: Effectiveness of siRNA uptake in target tissues by various delivery methods. Surgery; 2007, 142:262-269.
[49]. Kim HJ, Kim A, Miyata K, Kataoka K: Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Deliver. Rev.; 2016, 104:61-77.
[50]. Xiong XB, Uludag H, Lavasanifar A: Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials; 2009, 30:242-253.
[51]. Snove O, Holen T: Many commonly used siRNAs risk off-target activity. Biochem. Bioph. Res. Co.; 2004, 319:256-263.
[52]. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJC, Yamasaki S, Itaya M, Pan YZ, et al: Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature; 2008, 452:591-U591.
[53]. Forsbach A, Nemorin JG, Montino C, Muller C, Samulowitz U, Vicari AP, Jurk M, Mutwiri GK, Krieg AM, Lipford GB, Vollmer J: Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J. Immunol.; 2008, 180:3729-3738.
[54]. Forsbach A, Muller C, Montino C, Kritzler A, Curdt R, Benahmed A, Jurk M, Vollmer J: Impact of delivery systems on siRNA immune activation and RNA interference. Immunol. Lett.; 2012, 141:169-180.
[55]. Williford JM, Wu J, Ren Y, Archang MM, Leong KW, Mao HQ: Recent Advances in Nanoparticle-Mediated siRNA Delivery. Annu. Rev. Biomed. Eng.;, Vol 16 2014, 16:347-370.
[56]. Young SWS, Stenzel M, Yang JL: Nanoparticle-siRNA: A potential cancer therapy? Crit. Rev. Oncol. Hemat.; 2016, 98:159-169.
[57]. Iyer AK, Khaled G, Fang J, Maeda H: Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today; 2006, 11:812-818.
[58]. Greish K: Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. J. Drug Target.; 2007, 15:457-464.
[59]. Lin TY, Rodriguez CO, Li YP: Nanomedicine in veterinary oncology. Vet. J.; 2015, 205:189-197.
[60]. Putnam D: Polymers for gene delivery across length scales. Nature Materials; 2006, 5:439-451.
[61]. Brummelkamp TR, Bernards R, Agami R: Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell; 2002, 2:243-247.
[62]. Xia HB, Mao QW, Paulson HL, Davidson BL: siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol.; 2002, 20:1006-1010.
[63]. Tomar RS, Matta H, Chaudhary PM: Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene; 2003, 22:5712-5715.
[64]. Lee SJ, Yhee JY, Kim SH, Kwon IC, Kim K: Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice. J. Control Release; 2013, 172:358-366.
[65]. Son S, Song S, Lee SJ, Min S, Kim SA, Yhee JY, Huh MS, Kwon IC, Jeong SY, Byun Y, et al: Self-crosslinked human serum albumin nanocarriers for systemic delivery of polymerized siRNA to tumors. Biomaterials; 2013, 34:9475-9485.
[66]. Wang Y, Li ZG, Han Y, Liang LH, Ji AM: Nanoparticle-Based Delivery System for Application of siRNA In Vivo. Current Drug Metabolism; 2010, 11:182-196.
[67]. Rudzinski WE, Aminabhavi TM: Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm.; 2010, 399:1-11.
[68]. Ragelle H, Vandermeulen G, Preat V: Chitosan-based siRNA delivery systems. J. Control Release; 2013, 172:207-218.
[69]. Mao SR, Sun W, Kissel T: Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliver. Rev.; 2010, 62:12-27.
[70]. Nicoli E, Syga MI, Bosetti M, Shastri VP: Enhanced Gene Silencing through Human Serum Albumin-Mediated Delivery of Polyethylenimine-siRNA Polyplexes. Plos One; 2015, 10.
[71]. Malhotra A, Mittal BR: SiRNA gene therapy using albumin as a carrier. Pharmacogenetics and Genomics; 2014, 24:582-587.
[72]. Kummitha CM, Malamas AS, Lu ZR: Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphiphile/siRNA nanoparticles. International Journal of Nanomedicine; 2012, 7:5205-5214.
[73]. Ishikawa H, Nakamura Y, Jo J, Tabata Y: Gelatin nanospheres incorporating siRNA for controlled intracellular release. Biomaterials; 2012, 33:9097-9104.
[74]. Loftsson T, Brewster ME: Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol.; 2010, 62:1607-1621.
[75]. Chaturvedi K, Ganguly K, Kulkarni AR, Kulkarni VH, Nadagouda MN, Rudzinski WE, Aminabhavi TM: Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opinion on Drug Delivery; 2011, 8:1455-1468.
[76]. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature; 2010, 464:1067-U1140.
[77]. Helmschrodt C, Bauer A, Hobel S, Schoniger S, Fietz SA, Aigner A, Richter A, Richter F: Polyethylenimine (PEI) nanoparticle-mediated delivery of siRNA to silence neuronal gene expression of alpha-synuclein in a mouse model of Parkinson's disease. Movement Disord.; 2016, 31:S231-S231.
[78]. Terrazas M, Kool ET: RNA major groove modifications improve siRNA stability and biological activity. Nucleic Acids Res.;2009, 37:346-353.
[79]. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP: A Versatile Vector For Gene And Oligonucleotide Transfer Into Cells In Culture And In-Vivo - Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America 1995, 92:7297-7301.
[80]. Sonawane ND, Szoka FC, Verkman AS: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem.; 2003, 278:44826-44831.
[81]. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang QQ, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC: Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res.; 2004, 32.
[82]. Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA: A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: Polyethylenimine. Hum. Gene Ther. 1996, 7:1947-1954.
[83]. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A: RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther.; 2005, 12:461-466.
[84]. Akhtar S, Benter I: Toxicogenomics of non-viral drug delivery systems for RNAi: Potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliver Rev.; 2007, 59:164-182.
[85]. Shim MS, Kwon YJ: Acid-Responsive Linear Polyethylenimine for Efficient, Specific, and Biocompatible siRNA Delivery. Bioconjugate Chem.; 2009, 20:488-499.
[86]. Fischer D, Li YX, Ahlemeyer B, Krieglstein J, Kissel T: In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials; 2003, 24:1121-1131.
[87]. Khan A, Benboubetra M, Sayyed PZ, Ng KW, Fox S, Beck G, Benter IF, Akhtar S: Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J. Drug Target.; 2004, 12:393-404.
[88]. Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM: Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: Effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine-Nanotechnology Biology and Medicine 2007, 3:173-183.
[89]. Patil Y, Panyam J: Polymeric nanoparticles for siRNA delivery and gene silencing. Int. J. Pharm.; 2009, 367:195-203.
[90]. Katas H, Cevher E, Alpara HO: Preparation of polyethyleneimine incorporated poly(D,L-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. Int. J. Pharm.; 2009, 369:144-154.
[91]. Svenson S: Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm.; 2009, 71:445-462.
[92]. Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW: Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magnet. Reson. Med.; 2001, 46:781-788.
[93]. Yang H, Morris JJ, Lopina ST: Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J. Colloid Interf.Sci.; 2004, 273:148-154.
[94]. Verdine GL, Walensky LD: The challenge of drugging undruggable targets in cancer: Lessons learned from targeting BCL-2 family members. Clin. Cancer Res.; 2007, 13:7264-7270.
[95]. Patil A, Shaikh IM, Kadam VJ, Jadhav KR: Nanotechnology in Therapeutics - Current Technologies and Applications. Current Nanoscience; 2009, 5:141-153.
[96]. Perrimon N, Ni JQ, Perkins L: In vivo RNAi: Today and Tomorrow. Cold Spring Harbor Perspectives in Biology 2010, 2.
[97]. MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, Brahmbhatt VN, Phillips L, Pattison ST, Petti C, et al: Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat. Biotechnol.; 2009, 27:643-U697.
[98]. Abbasi M, Lavasanifar A, Uludag H: Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Med. Res. Rev.; 2013, 33:33-53.
[99]. Saraswathy M, Gong SQ: Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment. Materials Today; 2014, 17:298-306.
[100]. Parhi P, Mohanty C, Sahoo SK: Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov. Today; 2012, 17:1044-1052.
[101]. Guo W, Chen WB, Yu WD, Huang WL, Deng WG: Small interfering RNA-based molecular therapy of cancers. Chinese Journal of Cancer 2013, 32:488-493.
[102]. Lares MR, Rossi JJ, Ouellet DL: RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol.; 2010, 28:570-579.
[103]. McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, Wieland SF, Marion PL, Kay MA: Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol.; 2003, 21:639-644.
[104]. Khaliq S, Khaliq SA, Zahur M, Ijaz B, Jahan S, Ansar M, Riazuddin S, Hassan S: RNAi as a new therapeutic strategy against HCV. Biotechnol. Adv.; 2010, 28:27-34.
[105]. Li MJ, Li HT, Rossi JJ: RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy. Oligonucleotide Therapeutics; 2006, 1082:172-179.
[106]. Kumar P, Ban HS, Kim SS, Wu HQ, Pearson T, Greiner DL, Laouar A, Yao JH, Haridas V, Habiro K, et al: T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008, 134:577-586.
[107]. Rondinone CM: Therapeutic potential of RNAi in metabolic diseases. Biotechniques; 2006, 40:31-36.
[108]. Boden D, Pusch O, Silbermann R, Lee F, Tucker L, Ramratnam B: Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res.: 2004, 32:1154-1158.
[109]. Czech MP, Aouadi M, Tesz GJ: RNAi-based therapeutic strategies for metabolic disease. Nat. Rev. Endocrinol,; 2011, 7:473-484.
[110]. Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, et al: Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proceedings of the National Academy of Sciences of the United States of America 2007, 104:12982-12987.
[111]. Lee SH, Kang YY, Jang HE, Mok H: Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Adv. Drug Deliv. Rev.; 2016, 104:78-92.
Yıl 2018,
Cilt: 7 Sayı: 1, 74 - 89, 28.02.2018
Zülal Yalınca
,
Şükrü Tüzmen
Kaynakça
- [1]. Wang X, Wang YQ, Chen Z, Shin DM: Advances of Cancer Therapy by Nanotechnology. Cancer Research and Treatment; 2009, 41:1-11.
[2]. Chapman EJ, Carrington JC: Specialization and evolution of endogenous small RNA pathways. Nature Reviews Genetics; 2007, 8:884-896.
[3]. Lee SJ, Son S, Yhee JY, Choi K, Kwon IC, Kim SH, Kim K: Structural modification of siRNA for efficient gene silencing. Biotechnol Adv.: 2013, 31:491-503.
[4]. Lee SJ, Kim MJ, Kwon IC, Roberts TM: Delivery strategies and potential targets for siRNA in major cancer types. Adv. Drug Deliver. Rev.; 2016, 104:2-15.
[5]. Tuzmen S, Tuzmen P, Arora S, Mousses S, Azorsa D: RNAi-based functional pharmacogenomics. Methods Mol. Biol.; 2011, 700:271-290.
[6]. Kang S, Hong YS: RNA interference in infectious tropical diseases. Korean Journal of Parasitology; 2008, 46:1-15.
[7]. Ding SW, Voinnet O: Antiviral immunity directed by small RNAs. Cell; 2007, 130:413-426.
[8]. Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM: The evolution of RNAi as a defence against viruses and transposable elements. Philosophical Transactions of the Royal Society B-Biological Sciences 2009, 364:99-115.
[9]. Saurabh S, Vidyarthi AS, Prasad D: RNA interference: concept to reality in crop improvement. Planta; 2014, 239:543-564.
[10]. Tijsterman M, Plasterk RHA: Dicers at RISC: The mechanism of RNAi. Cell; 2004, 117:1-3.
[11]. Elbashir SM, Lendeckel W, Tuschl T: RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes & Development; 2001, 15:188-200.
[12]. Xu CF, Wang J: Delivery systems for siRNA drug development in cancer therapy. Asian Journal of Pharmaceutical Sciences; 2015, 10:1-12.
[13]. Basu GD, Azorsa DO, Kiefer JA, Rojas AM, Tuzmen S, Barrett MT, Trent JM, Kallioniemi O, Mousses S: Functional evidence implicating S100P in prostate cancer progression. Int. J. Cancer; 2008, 123:330-339.
[14]. Savas S, Azorsa DO, Jarjanazi H, Ibrahim-Zada I, Gonzales IM, Arora S, Henderson MC, Choi YH, Briollais L, Ozcelik H, Tuzmen S: NCI60 Cancer Cell Line Panel Data and RNAi Analysis Help Identify EAF2 as a Modulator of Simvastatin and Lovastatin Response in HCT-116 Cells. Plos One; 2011, 6.
[15]. Sarett SM, Nelson CE, Duvall CL: Technologies for controlled, local delivery of siRNA. J. Control Release; 2015, 218:94-113.
[16]. Conde J, Ambrosone A, Hernandez Y, Tian FR, McCully M, Berry CC, Baptista PV, Tortiglione C, de la Fuente JM: 15 years on siRNA delivery: Beyond the State-of-the-Art on inorganic nanoparticles for RNAi therapeutics. Nano Today; 2015, 10:421-450.
[17]. Robb GB, Rana TM: RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol. Cell; 2007, 26:523-537.
[18]. Meng H, Mai WX, Zhang HY, Xue M, Xia T, Lin SJ, Wang X, Zhao Y, Ji ZX, Zink JI, Nel AE: Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer in Vitro and in Vivo. Acs Nano; 2013, 7:994-1005.
[19]. Resnier P, Montier T, Mathieu V, Benoit JP, Passirani C: A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials; 2013, 34:6429-6443.
[20]. Mittal V: Improving the efficiency of RNA interference in mammals. Nature Reviews Genetics; 2004, 5:355-365.
[21]. Seyhan AA: RNAi: a potential new class of therapeutic for human genetic disease. Hum. Genet.; 2011, 130:583-605.
[22]. Bumcrot D, Manoharan M, Koteliansky V, Sah DWY: RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology; 2006, 2:711-719.
[23]. Seyhan AA, Alizadeh BN, Lundstrom K, Johnston BH: RNA interference-mediated inhibition of semliki forest virus replication in mammalian cells. Oligonucleotides; 2007, 17:473-484.
[24]. Son Aydin TS, Hizel C: Designing and Implementing Pharmacogenomics Study: Appropriateness and Validation of Pharmacogenomics. In Omics for Personalized Medicine,. Springer; 2013: 97-122
[25]. Tüzmen S, Azorsa D.,Weaver D., Caplen N., Kallioniemi O., Mousses S: Validation of siRNA knockdowns by real-time quantitative PCR. International qPCR Symposium and Application Workshop; 2004.
[26]. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BRG: Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol.; 2003, 5:834-839.
[27]. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, et al: Position-specific chemical modification of siRNAs reduces "off-target'' transcript silencing. Rna-a Publication of the Rna Society; 2006, 12:1197-1205.
[28]. Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K, Leake D, Marshall WS, Khvorova A: Off-target effects by siRNA can induce toxic phenotype. Rna-a Publication of the Rna Society; 2006, 12:1188-1196.
[29]. Naito Y, Yamada T, Ui-Tei K, Morishita S, Saigo K: siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res.; 2004, 32:W124-W129.
[30]. Gandhi NS, Tekade RK, Chougule MB: Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances. J. Control Release; 2014, 194:238-256.
[31]. Reischl D, Zimmer A: Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine-Nanotechnology Biology and Medicine; 2009, 5:8-20.
[32]. Kanasty R, Dorkin JR, Vegas A, Anderson D: Delivery materials for siRNA therapeutics. Nature Materials; 2013, 12:967-977.
[33]. Whitehead KA, Langer R, Anderson DG: Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery; 2009, 8:129-138.
[34]. Conde J, Arnold CE, Tian FR, Artzi N: RNAi nanomaterials targeting immune cells as an anti-tumor therapy: the missing link in cancer treatment? Materials Today; 2016, 19:29-43.
[35]. Dominska M, Dykxhoorn DM: Breaking down the barriers: siRNA delivery and endosome escape. J. CELL SCI.; 2010, 123:1183-1189.
[36]. Marques JT, Williams BRG: Activation of the mammalian immune system by siRNAs. Nature Biotechnol.; 2005, 23:1399-1405.
[37]. Gomes-da-Silva LC, Simoes S, Moreira JN: Challenging the future of siRNA therapeutics against cancer: the crucial role of nanotechnology. Cell. Mol. Life Sci.; 2014, 71:1417-1438.
[38]. Castanotto D, Rossi JJ: The promises and pitfalls of RNA-interference-based therapeutics. Nature; 2009, 457:426-433.
[39]. Philipp A, Zhao XB, Tarcha P, Wagner E, Zintchenko A: Hydrophobically Modified Oligoethylenimines as Highly Efficient Transfection Agents for siRNA Delivery. Bioconjugate Chem.; 2009, 20:2055-2061.
[40]. Bruno K: Using drug-excipient interactions for siRNA delivery. Adv. Drug Deliver. Rev.; 2011, 63:1210-1226.
[41]. Wang J, Lu Z, Wientjes MG, Au JLS: Delivery of siRNA Therapeutics: Barriers and Carriers. Aaps Journa;l 2010, 12:492-503.
[42]. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK: RNA interference in the clinic: challenges and future directions. Nature Reviews Cancer; 2011, 11:59-67.
[43]. Bora RS, Gupta D, Mukkur TKS, Saini KS: RNA interference therapeutics for cancer: Challenges and opportunities (Review). Molecular Medicine Reports; 2012, 6:9-15.
[44]. Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J: Going beyond the liver: Progress and challenges of targeted delivery of siRNA therapeutics. J. Control Release; 2015, 203:1-15.
[45]. Nimesh S, Gupta N, Chandra R: Strategies and advances in nanomedicine for targeted siRNA delivery. Nanomedicine; 2011, 6:729-746.
[46]. Krebs MD, Alsberg E: Localized, Targeted, and Sustained siRNA Delivery. Chem-Eur. J.; 2011, 17:3054-3062.
[47]. Vicentini F, Borgheti-Cardoso LN, Depieri LV, Mano DD, Abelha TF, Petrilli R, Bentley M: Delivery Systems and Local Administration Routes for Therapeutic siRNA. Pharmaceut. Res.; 2013, 30:915-931.
[48]. Larson SD, Jackson LN, Chen LA, Rychahou PG, Evers BM: Effectiveness of siRNA uptake in target tissues by various delivery methods. Surgery; 2007, 142:262-269.
[49]. Kim HJ, Kim A, Miyata K, Kataoka K: Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Deliver. Rev.; 2016, 104:61-77.
[50]. Xiong XB, Uludag H, Lavasanifar A: Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials; 2009, 30:242-253.
[51]. Snove O, Holen T: Many commonly used siRNAs risk off-target activity. Biochem. Bioph. Res. Co.; 2004, 319:256-263.
[52]. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJC, Yamasaki S, Itaya M, Pan YZ, et al: Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature; 2008, 452:591-U591.
[53]. Forsbach A, Nemorin JG, Montino C, Muller C, Samulowitz U, Vicari AP, Jurk M, Mutwiri GK, Krieg AM, Lipford GB, Vollmer J: Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J. Immunol.; 2008, 180:3729-3738.
[54]. Forsbach A, Muller C, Montino C, Kritzler A, Curdt R, Benahmed A, Jurk M, Vollmer J: Impact of delivery systems on siRNA immune activation and RNA interference. Immunol. Lett.; 2012, 141:169-180.
[55]. Williford JM, Wu J, Ren Y, Archang MM, Leong KW, Mao HQ: Recent Advances in Nanoparticle-Mediated siRNA Delivery. Annu. Rev. Biomed. Eng.;, Vol 16 2014, 16:347-370.
[56]. Young SWS, Stenzel M, Yang JL: Nanoparticle-siRNA: A potential cancer therapy? Crit. Rev. Oncol. Hemat.; 2016, 98:159-169.
[57]. Iyer AK, Khaled G, Fang J, Maeda H: Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today; 2006, 11:812-818.
[58]. Greish K: Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. J. Drug Target.; 2007, 15:457-464.
[59]. Lin TY, Rodriguez CO, Li YP: Nanomedicine in veterinary oncology. Vet. J.; 2015, 205:189-197.
[60]. Putnam D: Polymers for gene delivery across length scales. Nature Materials; 2006, 5:439-451.
[61]. Brummelkamp TR, Bernards R, Agami R: Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell; 2002, 2:243-247.
[62]. Xia HB, Mao QW, Paulson HL, Davidson BL: siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol.; 2002, 20:1006-1010.
[63]. Tomar RS, Matta H, Chaudhary PM: Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene; 2003, 22:5712-5715.
[64]. Lee SJ, Yhee JY, Kim SH, Kwon IC, Kim K: Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice. J. Control Release; 2013, 172:358-366.
[65]. Son S, Song S, Lee SJ, Min S, Kim SA, Yhee JY, Huh MS, Kwon IC, Jeong SY, Byun Y, et al: Self-crosslinked human serum albumin nanocarriers for systemic delivery of polymerized siRNA to tumors. Biomaterials; 2013, 34:9475-9485.
[66]. Wang Y, Li ZG, Han Y, Liang LH, Ji AM: Nanoparticle-Based Delivery System for Application of siRNA In Vivo. Current Drug Metabolism; 2010, 11:182-196.
[67]. Rudzinski WE, Aminabhavi TM: Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm.; 2010, 399:1-11.
[68]. Ragelle H, Vandermeulen G, Preat V: Chitosan-based siRNA delivery systems. J. Control Release; 2013, 172:207-218.
[69]. Mao SR, Sun W, Kissel T: Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliver. Rev.; 2010, 62:12-27.
[70]. Nicoli E, Syga MI, Bosetti M, Shastri VP: Enhanced Gene Silencing through Human Serum Albumin-Mediated Delivery of Polyethylenimine-siRNA Polyplexes. Plos One; 2015, 10.
[71]. Malhotra A, Mittal BR: SiRNA gene therapy using albumin as a carrier. Pharmacogenetics and Genomics; 2014, 24:582-587.
[72]. Kummitha CM, Malamas AS, Lu ZR: Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphiphile/siRNA nanoparticles. International Journal of Nanomedicine; 2012, 7:5205-5214.
[73]. Ishikawa H, Nakamura Y, Jo J, Tabata Y: Gelatin nanospheres incorporating siRNA for controlled intracellular release. Biomaterials; 2012, 33:9097-9104.
[74]. Loftsson T, Brewster ME: Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol.; 2010, 62:1607-1621.
[75]. Chaturvedi K, Ganguly K, Kulkarni AR, Kulkarni VH, Nadagouda MN, Rudzinski WE, Aminabhavi TM: Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opinion on Drug Delivery; 2011, 8:1455-1468.
[76]. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature; 2010, 464:1067-U1140.
[77]. Helmschrodt C, Bauer A, Hobel S, Schoniger S, Fietz SA, Aigner A, Richter A, Richter F: Polyethylenimine (PEI) nanoparticle-mediated delivery of siRNA to silence neuronal gene expression of alpha-synuclein in a mouse model of Parkinson's disease. Movement Disord.; 2016, 31:S231-S231.
[78]. Terrazas M, Kool ET: RNA major groove modifications improve siRNA stability and biological activity. Nucleic Acids Res.;2009, 37:346-353.
[79]. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP: A Versatile Vector For Gene And Oligonucleotide Transfer Into Cells In Culture And In-Vivo - Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America 1995, 92:7297-7301.
[80]. Sonawane ND, Szoka FC, Verkman AS: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem.; 2003, 278:44826-44831.
[81]. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang QQ, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC: Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res.; 2004, 32.
[82]. Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA: A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: Polyethylenimine. Hum. Gene Ther. 1996, 7:1947-1954.
[83]. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A: RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther.; 2005, 12:461-466.
[84]. Akhtar S, Benter I: Toxicogenomics of non-viral drug delivery systems for RNAi: Potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliver Rev.; 2007, 59:164-182.
[85]. Shim MS, Kwon YJ: Acid-Responsive Linear Polyethylenimine for Efficient, Specific, and Biocompatible siRNA Delivery. Bioconjugate Chem.; 2009, 20:488-499.
[86]. Fischer D, Li YX, Ahlemeyer B, Krieglstein J, Kissel T: In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials; 2003, 24:1121-1131.
[87]. Khan A, Benboubetra M, Sayyed PZ, Ng KW, Fox S, Beck G, Benter IF, Akhtar S: Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J. Drug Target.; 2004, 12:393-404.
[88]. Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM: Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: Effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine-Nanotechnology Biology and Medicine 2007, 3:173-183.
[89]. Patil Y, Panyam J: Polymeric nanoparticles for siRNA delivery and gene silencing. Int. J. Pharm.; 2009, 367:195-203.
[90]. Katas H, Cevher E, Alpara HO: Preparation of polyethyleneimine incorporated poly(D,L-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. Int. J. Pharm.; 2009, 369:144-154.
[91]. Svenson S: Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm.; 2009, 71:445-462.
[92]. Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW: Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magnet. Reson. Med.; 2001, 46:781-788.
[93]. Yang H, Morris JJ, Lopina ST: Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J. Colloid Interf.Sci.; 2004, 273:148-154.
[94]. Verdine GL, Walensky LD: The challenge of drugging undruggable targets in cancer: Lessons learned from targeting BCL-2 family members. Clin. Cancer Res.; 2007, 13:7264-7270.
[95]. Patil A, Shaikh IM, Kadam VJ, Jadhav KR: Nanotechnology in Therapeutics - Current Technologies and Applications. Current Nanoscience; 2009, 5:141-153.
[96]. Perrimon N, Ni JQ, Perkins L: In vivo RNAi: Today and Tomorrow. Cold Spring Harbor Perspectives in Biology 2010, 2.
[97]. MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, Brahmbhatt VN, Phillips L, Pattison ST, Petti C, et al: Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat. Biotechnol.; 2009, 27:643-U697.
[98]. Abbasi M, Lavasanifar A, Uludag H: Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Med. Res. Rev.; 2013, 33:33-53.
[99]. Saraswathy M, Gong SQ: Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment. Materials Today; 2014, 17:298-306.
[100]. Parhi P, Mohanty C, Sahoo SK: Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov. Today; 2012, 17:1044-1052.
[101]. Guo W, Chen WB, Yu WD, Huang WL, Deng WG: Small interfering RNA-based molecular therapy of cancers. Chinese Journal of Cancer 2013, 32:488-493.
[102]. Lares MR, Rossi JJ, Ouellet DL: RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol.; 2010, 28:570-579.
[103]. McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, Wieland SF, Marion PL, Kay MA: Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol.; 2003, 21:639-644.
[104]. Khaliq S, Khaliq SA, Zahur M, Ijaz B, Jahan S, Ansar M, Riazuddin S, Hassan S: RNAi as a new therapeutic strategy against HCV. Biotechnol. Adv.; 2010, 28:27-34.
[105]. Li MJ, Li HT, Rossi JJ: RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy. Oligonucleotide Therapeutics; 2006, 1082:172-179.
[106]. Kumar P, Ban HS, Kim SS, Wu HQ, Pearson T, Greiner DL, Laouar A, Yao JH, Haridas V, Habiro K, et al: T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008, 134:577-586.
[107]. Rondinone CM: Therapeutic potential of RNAi in metabolic diseases. Biotechniques; 2006, 40:31-36.
[108]. Boden D, Pusch O, Silbermann R, Lee F, Tucker L, Ramratnam B: Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res.: 2004, 32:1154-1158.
[109]. Czech MP, Aouadi M, Tesz GJ: RNAi-based therapeutic strategies for metabolic disease. Nat. Rev. Endocrinol,; 2011, 7:473-484.
[110]. Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, et al: Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proceedings of the National Academy of Sciences of the United States of America 2007, 104:12982-12987.
[111]. Lee SH, Kang YY, Jang HE, Mok H: Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Adv. Drug Deliv. Rev.; 2016, 104:78-92.