Araştırma Makalesi
BibTex RIS Kaynak Göster

Escherichia coli’de Metallere ve pH Stresine karşı RpoS’nin Rolünün Araştırılması

Yıl 2018, Cilt: 7 Sayı: 2, 105 - 121, 17.08.2018
https://doi.org/10.18036/aubtdc.372141

Öz

Escherichia coli’de
alternatif sigma faktörü olarak adlandırılan rpoS38) asit şoku, açlık stresi, ozmotik stres,
oksidatif stres, DNA hasarı ve durağan faza geçiş dahil olmak üzere farklı streslere
karşı hücresel cevapta görevli olan genlerin ekspresyonunu kontrol etmektedir. Bu
çalışmada Escherichia coli W3110’da rpoS geninin metal ve pH stresi altındaki
rolü araştırılmıştır. E. coli BW25113
suşunda mutant olan rpoS geni, P1kc
fajı ile yabani tip E. coli W3110’a
aktarılmıştır. Yabani tip E. coli
W3110 ve rpoS mutant E. coli W3110 suşunda yaşam deneyleri pH
5.5, 7.0 ve 8.0 fosfat tamponunda olmak üzere 3 farklı pH’da plak sayım metodu
ile yapılmıştır. 6 farklı metal varlığında (Zn, Ni, Co, Cd, Ag ve Cu) metal
stresindeki rolü minimal inhibisyon konsantrasyonu ve petri damlatma yöntemi
ile belirlenmiştir. Çalışılan tüm pH değerlerinde rpoS mutant suşlarda duyarlılık gözlenmiştir. Cd metaline karşı rpoS mutantının oldukça önemli bir
direnç gösterdiği belirlenirken, diğer metallerde herhangi bir rolü olmadığı
tespit edilmiştir. rpoS geninin rolü,
genin tamamlanması yapılarak doğrulaması sağlanmıştır. Bu sonuçlar RpoS
alternatif sigma faktörünün Cd metali ile ilişkili genlerin kontrolünde ve pH
stresi ile ilişkili genlerde rolü olduğunu göstermektedir

Kaynakça

  • [1] Arda M. Bakterilerde Varyasyonlar. Temel Mikrobiyoloji; Genişletilmiş İkinci Baskı. Prof. Dr. Mustafa Arda., Medisan Yayın Serisi 2000; 1-15.
  • [2] Liu X, Wu Y, Chen Y, Xu F, Halliday N, Gao K, Chan K, Camara M. RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res Microbiol 2016; 167: 168-177.
  • [3] Nagar SD, Aggarwal B, Joon S, Bhatnagar R, Bhatnagar S.A. Network Biology Approach to Decipher Stress Response in Bacteria Using Escherichia coli As a Model. OMICS 2016; 20: 5.
  • [4] Ma Z, Jacobsen F.E, Giedroc D.P. Metal Transporters and Metal Sensors: How Coordination Chemistry Controls Bacterial Metal Homeostasis. Chem Rev 2009; 109(10): 4644–4681.
  • [5] Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, Daley DO. Protein complexes of the Escherichia coli cell envelope. J Biol Chem 2005; 280: 34409– 34419.
  • [6] Alcaraz A, Nestorovich EM, Aguilella-Arzo M, Aguilella VM, Bezrukov SM. Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. Biophys J 2004; 87: 943–957.
  • [7] Egler M, Grosse C, Grass G, Nies D.H. Role of the Extracytoplasmic Function Protein Family Sigma Factor RpoE in Metal Resistance of Escherichia coli. J Bacteriol 2005; 187: 2297–2307.
  • [8] Eitinger T, Suhr J, Moore L, Smith JAC. Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 2005; 18: 399–405.
  • [9] Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T., Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 2006; 188: 317–327.
  • [10] Franke S, Grass G, Rensing C, Nies D.H. Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli. J Bacteriol 2003; 3804–3812.
  • [11] Hantke K. Bacterial zinc uptake and regulators. Curr. Opın. Microbiol 2005; 8: 196–202.
  • [12] Wang D, Fierke C.A. The BaeSR regulon is involved in defense against zinc toxicity in E. coli. Metallomics 2013; 5(4): 372-83.
  • [13] Wang D, Hosteen O, Fierke C.A. ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. J Inorg Biochem 2012; 111: 173–181.
  • [14] Forbes JR, Gros P. Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at theplasma membrane. Blood 2003; 102: 1884–1892.
  • [15] Kehres DG, Janakiraman A, Slauch JM, Maguire ME. SitABCD is the alkaline Mn(2+) transporter of Salmonella enterica serovar typhimurium. J Bacteriol 2002; 184: 3159-3166.
  • [16] Waters LS, Sandoval M, Storz G. The Escherichia coli MntR mini regulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis. J Bacteriol 2011; 193: 5887–5897.
  • [17] De Pina K, Navarro C, McWalter L, Boxer DH, Price NC, Kelly SM, Mandrand-Berthelot MA, Wu LF. Purification and characterization of the periplasmic nickelbinding protein NikA of Escherichia coli K12. Eur J Biochem 1995; 227: 857–865.
  • [18] Austin CB, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends in Microbiol 2006; 14: 4.
  • [19] Rodrigue A, Effantin G, Mandrand-Bethelot MA. Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 2005; 187: 2912–2916.
  • [20] Iwig JS, Rowe JL, Chivers PT. Nickel homeostasis in Escherichia coli – the rcnR– rcnA efflux pathway and its linkage to NikR function. Mol Microbiol 2006; 62: 252–262.
  • [21] David G, Blondeau K, SchiltzM, Penel S, Bentley AL. YodA from Escherichia coli Is a Metal-binding, Lipocalin-like Protein. J Biol Chem 2003; 278 (44): 43728–43735.
  • [22] Stojnev T, Harichová J, Ferianc P, Nyström T. Function of a novel cadmium-induced YodA protein in Escherichia coli. Curr Microbiol 2007; 55(2): 99-104.
  • [23] Rensing C, Bharati M. Zinc, Cadmium, and Lead Resistance and Homeostasis. Microbiology Monographs 2007; (6): 321-341.
  • [24] Yamamoto K., Ishıhama A. Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci Biotech Bioch 2006; 70 (7): 1688 1695.
  • [25] Outten FW, Huffman DL, Hale JA, O’Halloran TV. The Independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 2001; 276 (33): 30670–30677.
  • [26] Nies DH. Bacterial transition metal homeostasis. Microbiology Monographs 2007; (6): 117-142.
  • [27] Kim EH, Nies DH, McEvoy MM, Rensing C. Switch or Funnel: How RND-Type transport systems control periplasmic metal homeostas. J Bacteriol 2011; 2381–2387.
  • [28] Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 2011; 9(5): 330–343.
  • [29] Hill C, O'Driscoll B, Booth I. Acid adaptation and food poisoning microorganisms. Int J Food Microbiol 1995; 28; 245-254.
  • [30] Tosun H. Bazı Patojen bakterilerin aside tolerans kazanmasının tanımlanması ve gıda sanayindeki önemi. Doktora Tezi, Ege Üniv. Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı 2003.
  • [31] Foster JW, Hall HK. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 1991; 5129-5153.
  • [32] Leyer GJ, Wang L, Johnson EA. Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl Environ Microb 1995; 3752-3755.
  • [33] Gahan CGM, O'Drıscoll B, Hill C. Acid Adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl Environ Microb 1996; 3128-3132.
  • [34] Choi SH, Baumler DJ, Kapsar CW. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microb 2000; 66 (9): 3911-3916.
  • [35] Peng S, Tasara T, Hummerjohann J, Stephan O. An Overview of molecular stress response mechanisms in Escherichia coli contributing to survival of shiga toxin–producing Escherichia coli during raw milk cheese production, J Food Protect 2011; 74 (5): 849–864.
  • [36] Arnold KW, Kaspar CW. Starvation- and stationary-phase-induced acid tolerance in Escherichia coli O157:H7. Appl Environ Microb 1995; 61; 2037-2039.
  • [37] Berry ED, Barkocy-Gallagher GA, Siragusa GR. Stationary-phase acid resistance and injury of recent bovine Escherichia coli O157 and non-O157 Biotype 1 Escherichia coli isolates. J Food Protect 2004; 67(3); 583- 590.
  • [38] Rees CED, Dodd CER, Gibson PT, Booth IR, Stewart GSAB. The significance of bacteria in stationary phase to food microbiology. Int. J Food Microbiol 1995; 28; 263-275.
  • [39] Gahan CGM, Hill C. The relationship between acid stress responses and virulence in Salmonella Typhimurium and Listeria monocytogenes. Int J Food Microbiol 1999; 50; 93-100.
  • [40] Berry ED, Cutter CN. Effects of acid adaptation of E. coli O157:H7 on efficacy of acetic acid spray washes to decontaminate beef carcass tissue. Appl Environ Microb 2000; 66(4): 1493-1498.
  • [41] Yuk HG, Schneider KR. Adaptation of Salmonella spp. in juice stored under refrigerated and room temperature enhances acid resistance to simulated gastric fluid. Food Microbiology 2006; 23: 694-700.
  • [42] Cheung KJ, Badarinarayana V, Selinger DW, Janse D, Church GM. A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res 2003; 13: 206–215.
  • [43] Sammartano LJ, Tuveson RW, Davenport R., Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the E. coli katF (rpoS) locus. J Bacteriol 1986; 168: 13–21.
  • [44] Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 2012; 525: 161–169.
  • [45] Khil PP, Camerini-Otero RD. Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 2002; 44: 89–105.
  • [46] Lombardo MJ, Aponyi I, Rosenberg SM, General stress response regulator RpoS in adaptive mutation and amplication in Escherichia coli. Genetics 2004; 166: 669–680.
  • [47] Schembri MA, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol 2003; 48: 253–267.
  • [48] Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 2004; 272:580–591.
  • [49] Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R., Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 2005; 187:1591–1603.
  • [50] Lacour S, Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identication of their promoter sequences. J Bacteriol 2004; 186: 7186–7195.
  • [51] Farewell, A, Kvint K, Nystrom T. Negative regulation by rpoS a case of sigma factor competition. Mol Microbiol 1998; 29: 1039-1051.
  • [52] Nystrom T. Growth versus maintenance: a trade-oV dictated by RNA polymerase availability and sigma factor competition. Mol Microbiol 2004; 54: 855–862.
  • [53] Sato M, Machida K, Arıkado E, Saito H, Kakegawa T, et al., Expression of outer membrane proteins in Escherichia coli growing at acid pH. Appl. Environ. Microb 2000; 66 (3): 943-947.
  • [54] Prabhakaran P, Ashraf MA, Aqma WS. Microbial Stress Response to Heavy Metal in the Environment. RSC Adv 2016; 6: 109862-109877.
  • [55] Collet A, Cosette P, Beloin C, Ghigo JM, Rihouey C, Lerouge P, Junter GA, Jouenne T. Impact of rpoS Deletion on the Proteome of Escherichia coli Grown Planktonically and as Biofilm. J Proteome Res 2008; 7: 4659–4669.
  • [56] Cao Q, Feng F, Wang H, Xu X, Chen H, Cai X, Wang X. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance. Microbiol Res 2018;177-185.
  • [57] Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 2017; 15(6): 338-350.
  • [58] Magnani D, Solioz M,How Bacteria Handle Copper. Microbiology Monographs 2007;6:259-285.
  • [59] Hausinger RP, Zamble DB. Microbial Physiology of Nickel and Cobalt. Microbiology Monographs 2007; (6): 287-320.
  • [60] Dong T, Kirchhof GM, Schellhorn HE. RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics 2008; 279: 267–277.
  • [61] Macomber L, Rensing C, Imlay JA. Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 2007; 189: 1616–1626.
  • [62] Troxell B, Ye M, Yang Y, Carrasco SE, Lou Y, Yanga XF. Manganese and Zinc Regulate Virulence Determinants in Borrelia burgdorferi. Infect Immun. 2013; 81 (8): 2743-2752.
  • [63] Ishihama A. Functional modulation of Escherichia Coli RNA Polymerase. Annu. Rev. Microbiol 2000; 54: 499–518.
  • [64] Borukhov S, Nudlery E. RNA polymerase holoenzyme: structure, function and biological implications. Curr Opin Microbiol 2003; 6: 93–100.
  • [65] Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng 2003; 81: 753–767.
  • [66] Foster PL. Stress responses and genetic variation in bacteria. Mutat Res 2005; 569: 3-11.
  • [67] Lange R, Aronis RH. The cellular concentration of the s subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Gene Dev 1994; 8: 1600-1612.
  • [68] Aronis RH. Back to Log Phase: Sigma S as a Global Regulator in the Osmotic Control of Gene Expression in Escherichia coli. Mol Microbiol 1996; 21(5): 887-893.
  • [69] Ferguson GP, Creighton RI, Nikolaev Y, Booth IR. Importance of RpoS and Dps in Survival of Exposure of Both Exponential- and Stationary-Phase Escherichia coli Cells to the Electrophile N-Ethylmaleimide. J Bacteriol 1998; 1030–1036.
  • [70] Darcan C, Özkanca R, İdil Ö. The role of RpoS, H-NS and AcP on the pH-dependent OmpC and OmpF porin expressions of Escherichia coli at different Ph. Afr. J Biotechnol 2009; 8:(9) 1845-1854.
  • [71] Darcan C. An investigation on the effect of pH, starvation and osmotic stres on outer membrane porin protein synthesis level of Escherichia coli in the black sea water. Institute of Science, Ondokuz Mayıs University 2005.
  • [72] Padan E, Tzubery T, Herz K, Kozachkov L, Rimon L, Galili A. NhaA of E. coli, as a model of a pH-regulated Na+/H+antiporter. Review: Biochim et Biophys Acta 2004; 1658: 2 –13.
  • [73] Saıto H, Kobayashı H. Bacterial responses to alkaline stress. Sci Prog 2003; 86: 271-282.
  • [74] Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL. Acid and Base Resistance in Escherichia coli and Shigella flexneri: Role of rpoS and Growth pH. J Bacteriol 1994; 1729-1737.
  • [75] Bhagwat AA, Tan J, Sharma M, Kothary M, Low S, Tall BD, Bhagwat M. Functional Heterogeneity of RpoS in Stress Tolerance of Enterohemorrhagic Escherichia coli Strains. Appl Environ Microb 2006; 4978–4986.
  • [76] Heyde M, Portalier R. Acid shock proteins of E. coli. FEMS Microbiol Lett 1990;57(1-2): 19-26.

METALLERE VE pH STRESİNE KARŞI Escherichia coli’de RpoS’NİN ROLÜNÜN ARAŞTIRILMASI

Yıl 2018, Cilt: 7 Sayı: 2, 105 - 121, 17.08.2018
https://doi.org/10.18036/aubtdc.372141

Öz


RpoS (σ38), which
acts as an alternative sigma factor in Escherichia
coli
, controls the expression of genes responsible for cellular responses
to different stresses including acidity, starvation, osmotic, oxidative stress,
DNA damage, and stationary phase transition.
In this study, the role of the rpoS gene in Escherichia coli
W3110 under metals and pH stress was researched. The
rpoS gene, which is a mutant in the E. coli BW25113 strain, was transferred by transduction with the
P1kc phage to wild-type
E. coli
W3110. Life experiments in wild-type
E.
coli
W3110 and rpoS mutant E. coli W3110 strains were carried out
by plaque counting method at 3 different pH, in pH 5.5, 7.0 and 8.0 phosphate
buffer. The role of
rpoS in the
presence of 6 different metals (Zn, Ni, Co, Cd, Ag and Cu) was also determined
by the method of dropping petri. Sensitivity at rpoS mutant strains was
observed at all pH values studied. It has been determined that the rpoS mutant
E. coli against Cd metal shows a very significant resistance, but it has been
found that there is no role in other metals. Verification of the role of the
rpoS gene has been achieved by genetic complementation. These results show that
the RpoS alternative sigma factor plays a role in the control of genes related
to the Cd metal and in the genes associated with pH stress.




Kaynakça

  • [1] Arda M. Bakterilerde Varyasyonlar. Temel Mikrobiyoloji; Genişletilmiş İkinci Baskı. Prof. Dr. Mustafa Arda., Medisan Yayın Serisi 2000; 1-15.
  • [2] Liu X, Wu Y, Chen Y, Xu F, Halliday N, Gao K, Chan K, Camara M. RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res Microbiol 2016; 167: 168-177.
  • [3] Nagar SD, Aggarwal B, Joon S, Bhatnagar R, Bhatnagar S.A. Network Biology Approach to Decipher Stress Response in Bacteria Using Escherichia coli As a Model. OMICS 2016; 20: 5.
  • [4] Ma Z, Jacobsen F.E, Giedroc D.P. Metal Transporters and Metal Sensors: How Coordination Chemistry Controls Bacterial Metal Homeostasis. Chem Rev 2009; 109(10): 4644–4681.
  • [5] Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, Daley DO. Protein complexes of the Escherichia coli cell envelope. J Biol Chem 2005; 280: 34409– 34419.
  • [6] Alcaraz A, Nestorovich EM, Aguilella-Arzo M, Aguilella VM, Bezrukov SM. Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. Biophys J 2004; 87: 943–957.
  • [7] Egler M, Grosse C, Grass G, Nies D.H. Role of the Extracytoplasmic Function Protein Family Sigma Factor RpoE in Metal Resistance of Escherichia coli. J Bacteriol 2005; 187: 2297–2307.
  • [8] Eitinger T, Suhr J, Moore L, Smith JAC. Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 2005; 18: 399–405.
  • [9] Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T., Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 2006; 188: 317–327.
  • [10] Franke S, Grass G, Rensing C, Nies D.H. Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli. J Bacteriol 2003; 3804–3812.
  • [11] Hantke K. Bacterial zinc uptake and regulators. Curr. Opın. Microbiol 2005; 8: 196–202.
  • [12] Wang D, Fierke C.A. The BaeSR regulon is involved in defense against zinc toxicity in E. coli. Metallomics 2013; 5(4): 372-83.
  • [13] Wang D, Hosteen O, Fierke C.A. ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. J Inorg Biochem 2012; 111: 173–181.
  • [14] Forbes JR, Gros P. Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at theplasma membrane. Blood 2003; 102: 1884–1892.
  • [15] Kehres DG, Janakiraman A, Slauch JM, Maguire ME. SitABCD is the alkaline Mn(2+) transporter of Salmonella enterica serovar typhimurium. J Bacteriol 2002; 184: 3159-3166.
  • [16] Waters LS, Sandoval M, Storz G. The Escherichia coli MntR mini regulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis. J Bacteriol 2011; 193: 5887–5897.
  • [17] De Pina K, Navarro C, McWalter L, Boxer DH, Price NC, Kelly SM, Mandrand-Berthelot MA, Wu LF. Purification and characterization of the periplasmic nickelbinding protein NikA of Escherichia coli K12. Eur J Biochem 1995; 227: 857–865.
  • [18] Austin CB, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends in Microbiol 2006; 14: 4.
  • [19] Rodrigue A, Effantin G, Mandrand-Bethelot MA. Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 2005; 187: 2912–2916.
  • [20] Iwig JS, Rowe JL, Chivers PT. Nickel homeostasis in Escherichia coli – the rcnR– rcnA efflux pathway and its linkage to NikR function. Mol Microbiol 2006; 62: 252–262.
  • [21] David G, Blondeau K, SchiltzM, Penel S, Bentley AL. YodA from Escherichia coli Is a Metal-binding, Lipocalin-like Protein. J Biol Chem 2003; 278 (44): 43728–43735.
  • [22] Stojnev T, Harichová J, Ferianc P, Nyström T. Function of a novel cadmium-induced YodA protein in Escherichia coli. Curr Microbiol 2007; 55(2): 99-104.
  • [23] Rensing C, Bharati M. Zinc, Cadmium, and Lead Resistance and Homeostasis. Microbiology Monographs 2007; (6): 321-341.
  • [24] Yamamoto K., Ishıhama A. Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci Biotech Bioch 2006; 70 (7): 1688 1695.
  • [25] Outten FW, Huffman DL, Hale JA, O’Halloran TV. The Independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 2001; 276 (33): 30670–30677.
  • [26] Nies DH. Bacterial transition metal homeostasis. Microbiology Monographs 2007; (6): 117-142.
  • [27] Kim EH, Nies DH, McEvoy MM, Rensing C. Switch or Funnel: How RND-Type transport systems control periplasmic metal homeostas. J Bacteriol 2011; 2381–2387.
  • [28] Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 2011; 9(5): 330–343.
  • [29] Hill C, O'Driscoll B, Booth I. Acid adaptation and food poisoning microorganisms. Int J Food Microbiol 1995; 28; 245-254.
  • [30] Tosun H. Bazı Patojen bakterilerin aside tolerans kazanmasının tanımlanması ve gıda sanayindeki önemi. Doktora Tezi, Ege Üniv. Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı 2003.
  • [31] Foster JW, Hall HK. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J Bacteriol 1991; 5129-5153.
  • [32] Leyer GJ, Wang L, Johnson EA. Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl Environ Microb 1995; 3752-3755.
  • [33] Gahan CGM, O'Drıscoll B, Hill C. Acid Adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl Environ Microb 1996; 3128-3132.
  • [34] Choi SH, Baumler DJ, Kapsar CW. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microb 2000; 66 (9): 3911-3916.
  • [35] Peng S, Tasara T, Hummerjohann J, Stephan O. An Overview of molecular stress response mechanisms in Escherichia coli contributing to survival of shiga toxin–producing Escherichia coli during raw milk cheese production, J Food Protect 2011; 74 (5): 849–864.
  • [36] Arnold KW, Kaspar CW. Starvation- and stationary-phase-induced acid tolerance in Escherichia coli O157:H7. Appl Environ Microb 1995; 61; 2037-2039.
  • [37] Berry ED, Barkocy-Gallagher GA, Siragusa GR. Stationary-phase acid resistance and injury of recent bovine Escherichia coli O157 and non-O157 Biotype 1 Escherichia coli isolates. J Food Protect 2004; 67(3); 583- 590.
  • [38] Rees CED, Dodd CER, Gibson PT, Booth IR, Stewart GSAB. The significance of bacteria in stationary phase to food microbiology. Int. J Food Microbiol 1995; 28; 263-275.
  • [39] Gahan CGM, Hill C. The relationship between acid stress responses and virulence in Salmonella Typhimurium and Listeria monocytogenes. Int J Food Microbiol 1999; 50; 93-100.
  • [40] Berry ED, Cutter CN. Effects of acid adaptation of E. coli O157:H7 on efficacy of acetic acid spray washes to decontaminate beef carcass tissue. Appl Environ Microb 2000; 66(4): 1493-1498.
  • [41] Yuk HG, Schneider KR. Adaptation of Salmonella spp. in juice stored under refrigerated and room temperature enhances acid resistance to simulated gastric fluid. Food Microbiology 2006; 23: 694-700.
  • [42] Cheung KJ, Badarinarayana V, Selinger DW, Janse D, Church GM. A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res 2003; 13: 206–215.
  • [43] Sammartano LJ, Tuveson RW, Davenport R., Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the E. coli katF (rpoS) locus. J Bacteriol 1986; 168: 13–21.
  • [44] Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 2012; 525: 161–169.
  • [45] Khil PP, Camerini-Otero RD. Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 2002; 44: 89–105.
  • [46] Lombardo MJ, Aponyi I, Rosenberg SM, General stress response regulator RpoS in adaptive mutation and amplication in Escherichia coli. Genetics 2004; 166: 669–680.
  • [47] Schembri MA, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol 2003; 48: 253–267.
  • [48] Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 2004; 272:580–591.
  • [49] Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R., Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 2005; 187:1591–1603.
  • [50] Lacour S, Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identication of their promoter sequences. J Bacteriol 2004; 186: 7186–7195.
  • [51] Farewell, A, Kvint K, Nystrom T. Negative regulation by rpoS a case of sigma factor competition. Mol Microbiol 1998; 29: 1039-1051.
  • [52] Nystrom T. Growth versus maintenance: a trade-oV dictated by RNA polymerase availability and sigma factor competition. Mol Microbiol 2004; 54: 855–862.
  • [53] Sato M, Machida K, Arıkado E, Saito H, Kakegawa T, et al., Expression of outer membrane proteins in Escherichia coli growing at acid pH. Appl. Environ. Microb 2000; 66 (3): 943-947.
  • [54] Prabhakaran P, Ashraf MA, Aqma WS. Microbial Stress Response to Heavy Metal in the Environment. RSC Adv 2016; 6: 109862-109877.
  • [55] Collet A, Cosette P, Beloin C, Ghigo JM, Rihouey C, Lerouge P, Junter GA, Jouenne T. Impact of rpoS Deletion on the Proteome of Escherichia coli Grown Planktonically and as Biofilm. J Proteome Res 2008; 7: 4659–4669.
  • [56] Cao Q, Feng F, Wang H, Xu X, Chen H, Cai X, Wang X. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance. Microbiol Res 2018;177-185.
  • [57] Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 2017; 15(6): 338-350.
  • [58] Magnani D, Solioz M,How Bacteria Handle Copper. Microbiology Monographs 2007;6:259-285.
  • [59] Hausinger RP, Zamble DB. Microbial Physiology of Nickel and Cobalt. Microbiology Monographs 2007; (6): 287-320.
  • [60] Dong T, Kirchhof GM, Schellhorn HE. RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics 2008; 279: 267–277.
  • [61] Macomber L, Rensing C, Imlay JA. Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 2007; 189: 1616–1626.
  • [62] Troxell B, Ye M, Yang Y, Carrasco SE, Lou Y, Yanga XF. Manganese and Zinc Regulate Virulence Determinants in Borrelia burgdorferi. Infect Immun. 2013; 81 (8): 2743-2752.
  • [63] Ishihama A. Functional modulation of Escherichia Coli RNA Polymerase. Annu. Rev. Microbiol 2000; 54: 499–518.
  • [64] Borukhov S, Nudlery E. RNA polymerase holoenzyme: structure, function and biological implications. Curr Opin Microbiol 2003; 6: 93–100.
  • [65] Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng 2003; 81: 753–767.
  • [66] Foster PL. Stress responses and genetic variation in bacteria. Mutat Res 2005; 569: 3-11.
  • [67] Lange R, Aronis RH. The cellular concentration of the s subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Gene Dev 1994; 8: 1600-1612.
  • [68] Aronis RH. Back to Log Phase: Sigma S as a Global Regulator in the Osmotic Control of Gene Expression in Escherichia coli. Mol Microbiol 1996; 21(5): 887-893.
  • [69] Ferguson GP, Creighton RI, Nikolaev Y, Booth IR. Importance of RpoS and Dps in Survival of Exposure of Both Exponential- and Stationary-Phase Escherichia coli Cells to the Electrophile N-Ethylmaleimide. J Bacteriol 1998; 1030–1036.
  • [70] Darcan C, Özkanca R, İdil Ö. The role of RpoS, H-NS and AcP on the pH-dependent OmpC and OmpF porin expressions of Escherichia coli at different Ph. Afr. J Biotechnol 2009; 8:(9) 1845-1854.
  • [71] Darcan C. An investigation on the effect of pH, starvation and osmotic stres on outer membrane porin protein synthesis level of Escherichia coli in the black sea water. Institute of Science, Ondokuz Mayıs University 2005.
  • [72] Padan E, Tzubery T, Herz K, Kozachkov L, Rimon L, Galili A. NhaA of E. coli, as a model of a pH-regulated Na+/H+antiporter. Review: Biochim et Biophys Acta 2004; 1658: 2 –13.
  • [73] Saıto H, Kobayashı H. Bacterial responses to alkaline stress. Sci Prog 2003; 86: 271-282.
  • [74] Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL. Acid and Base Resistance in Escherichia coli and Shigella flexneri: Role of rpoS and Growth pH. J Bacteriol 1994; 1729-1737.
  • [75] Bhagwat AA, Tan J, Sharma M, Kothary M, Low S, Tall BD, Bhagwat M. Functional Heterogeneity of RpoS in Stress Tolerance of Enterohemorrhagic Escherichia coli Strains. Appl Environ Microb 2006; 4978–4986.
  • [76] Heyde M, Portalier R. Acid shock proteins of E. coli. FEMS Microbiol Lett 1990;57(1-2): 19-26.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Cihan Darcan

Özge Kaygusuz Bu kişi benim

Ezgi Aydın Bu kişi benim

Yayımlanma Tarihi 17 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 2

Kaynak Göster

APA Darcan, C., Kaygusuz, Ö., & Aydın, E. (2018). Escherichia coli’de Metallere ve pH Stresine karşı RpoS’nin Rolünün Araştırılması. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, 7(2), 105-121. https://doi.org/10.18036/aubtdc.372141
AMA Darcan C, Kaygusuz Ö, Aydın E. Escherichia coli’de Metallere ve pH Stresine karşı RpoS’nin Rolünün Araştırılması. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. Ağustos 2018;7(2):105-121. doi:10.18036/aubtdc.372141
Chicago Darcan, Cihan, Özge Kaygusuz, ve Ezgi Aydın. “Escherichia coli’de Metallere Ve PH Stresine karşı RpoS’nin Rolünün Araştırılması”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7, sy. 2 (Ağustos 2018): 105-21. https://doi.org/10.18036/aubtdc.372141.
EndNote Darcan C, Kaygusuz Ö, Aydın E (01 Ağustos 2018) Escherichia coli’de Metallere ve pH Stresine karşı RpoS’nin Rolünün Araştırılması. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7 2 105–121.
IEEE C. Darcan, Ö. Kaygusuz, ve E. Aydın, “Escherichia coli’de Metallere ve pH Stresine karşı RpoS’nin Rolünün Araştırılması”, Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, c. 7, sy. 2, ss. 105–121, 2018, doi: 10.18036/aubtdc.372141.
ISNAD Darcan, Cihan vd. “Escherichia coli’de Metallere Ve PH Stresine karşı RpoS’nin Rolünün Araştırılması”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7/2 (Ağustos 2018), 105-121. https://doi.org/10.18036/aubtdc.372141.
JAMA Darcan C, Kaygusuz Ö, Aydın E. Escherichia coli’de Metallere ve pH Stresine karşı RpoS’nin Rolünün Araştırılması. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2018;7:105–121.
MLA Darcan, Cihan vd. “Escherichia coli’de Metallere Ve PH Stresine karşı RpoS’nin Rolünün Araştırılması”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, c. 7, sy. 2, 2018, ss. 105-21, doi:10.18036/aubtdc.372141.
Vancouver Darcan C, Kaygusuz Ö, Aydın E. Escherichia coli’de Metallere ve pH Stresine karşı RpoS’nin Rolünün Araştırılması. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2018;7(2):105-21.