BibTex RIS Kaynak Göster

Trombosit-lökosit fonksiyonel etkileşiminin in-vitro koşullarda incelenmesi In-vitro evaluation ofplatelet-leucocyte functional interaction

Yıl 2005, , 51 - 56, 01.02.2005
https://doi.org/10.1501/Tipfak_0000000149

Öz

Kaynakça

  • Maschio D, Dejena E, Bazzoni G. Bidirectional modulation of platelet and polymorphonuclear leukocyte activities. Ann Hematol 1993; 67:23-31.
  • Cadrey Y, Dupovy D, Boneu B et al. Polymorphonulear leukocytes modulate tissue factor production by mononuclear cells: role of reactive oxygen species. J Immunol 2000; 164:3822-3828.
  • Klebanoffs CRA. Neutrophil-platelet interaction mediated by myeloperoxidase and hydrogen peroxidase. J Immunol 1980; 124:399.
  • Brandt E et all. The (TG and PF4; blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. Leukoc Biol 2000; 67:471-478.
  • Ehlert JE et all. Down-regulation of neutrophil functions by the ELR(+) CXC chemokine platelet basic protein. Blood 2000; 96:2965-2972.
  • Napota K et all. Activated platelets induce superoxide anion release by monocytes and neutrophils P-selectin. J Immunol 1993; 151:3267-3273.
  • Ruf A. et al. Contact-induced neutrophil activation by platelets in human cell suspensions and whole blood. The American Society of Hematology 1992; 80:1238-46.
  • Ruf A. et al. Platelet-induced neutrophil activation: platelet- expressed Şbrinogen induces the oxidative burst in neutrophils by an interaction with CD11c/CD18. Br J Haematol, 1995; 90:791- 96.
  • Aziz KA, Cawley JC, Zuzel M. Platelets prime PNL via released PF4. mechanism of priming and synergy with GM-CSF. British Journal of Haematology 1995; 91:846-853.
  • Packham MA, Kinlough-Rathbone RL, Mustard JF. Thromboxane A2 Causes Feedback AmpliŞcation Involving Extensive Thromboxane A2 Formation on Close Contact of Human Platelets in Media With a Low Concentration of Ionized Calcium. Blood 1987; 70:647-51.
  • Boyum A. Separation of lymphocytes, granulocytes, and monocytes from human blood using iodinated density gradient media. Methods In Enzymology . 1984; 108:88-102.
  • Krajian A. In: Frankel S, Reitman S. Editors. Tissue Staining Methods In Gradwohl’s Clinical Laboratory Methods and Diagnosis. Eds Sixth Edition Volum 2. London: The C. V. Mosby Company; 1963; pp1691.
  • Cardinal DC, Flower RJ. The electronic aggregometer: A novel device for assesing platelet behaviour in blood. J Pharmacol Met 1980; 3:135-158.
  • Phillips DR, Jennings LK, Edwards HH. IdentiŞcation of membran proteins mediating the interaction of human platelets. J Cell Biol 1980; 86:77-86.
  • Bednar, MM, Gross CE. Simple Whole Blood Procedure for Neutrophil Aggregation & Chemiluminescence with the Chrono- Log Whole Blood Lumi-Aggregometer. Chrono-Log Corporation News, 2001; 2-5.
  • Allen R. Phagocytic Leukocyte Oxygenation Activities and Chemiluminescence: A Kinetic Approach to Analysis. Methods In Enzymology 1986; 133:449-93.
  • Sweeney JD, Labuzetta JW, Michielson CE et al. Whole Blood Aggregation Using Impedance and Particle Counter Methods. Am J Clin Pathol 1989; 92:794-7.
  • Williams W, Beutler E, Erslew A, et al. Platelet morphology and function. In Heamatology, 4th Edition. USA McGrav-Hill Book Company; 1991; 1172.
  • Wojenski C, Silver MJ. A Quick Method for screening platelet Dysfunctions Using the Whole Blood Lumi- aggregometer. Thromb Haemostas 1984; 5:154-156.
  • DeChalet LR, Long GD, Shirly PS et al. Mechanism of the luminol-dependent chemiluminescence of human neutrophils. J Immunol 1982; 129:1589-1593.
  • Simon SI, Rochon YP, Lynam EB et al. (2-Integrin and L-Selectin are Obligatory Receptors In Neutrophil Aggregation. Blood 1993; 82:1097-1106.
  • Ostrovsky L, King AJ, Bond S et al. Juxtacrine Mechanism for Neutrophil Adhesion on Platelets InvolvesPlatelet-Activating Factor and a Selectin-Dependent Activation Process. The American Society of Hematology 1998; 91:3028-36.
  • Kuijper PHM, Torres HI, Van der Linden J AM et al. Platelet- Dependent Primary Hemostasis Promotes Selectin-and Integrin- Mediated Neutrophil Adhesion to Damaged Endothelium Under Flow Conditions. Blood 1996; 87:3271-81.
  • Maschio AD, Corvazier E, Maillet F et al. Platelet-dependent Induction and AmpliŞcation of Polymorphonuclear Leucocyte Lysosomal Enzyme Release. Br J Haematol 1989; 72:329-35.
  • Drabikova K, Jancinova V, Nosal R, et al. Human Blood Platelets, PNL Leukocytes and Their Interaction In Vitro. Responses to Selective and Non-selective Stimuli. Gen Physiol Biophys 2000; 19:393-404.
  • Nagata K, Tsuji T, Todoroki N et al. Activated Platelets Induce Superoxide Anion Release by Monocytes Neutrophils Through P-Selectin (CD62). J Immunol 1993; 151:3267-73.
  • Peterson F, Bock L, Flad HD et al. Platelet Factor 4-Induced Neutrophil-Endothelial Cell Interaction: Involvement of Mechanims and Functional Consequences Different From Those Elicited by Interleukin-8. Blood 1999; 94:4020-28.
  • Petersen F, Ludwing A, Flad HD et al. TNF-(Renders Human Neutrophils Responsive to Platelet Factor 4 (Comparison of PF-4 and IL-8 Reveals Different Activity ProŞles of the Two Chemokines). J of Immunuol 1996; 156:1954-62.
  • Iwabuchi K, Yamashita T. Platelet-Derived Neutrophil Adherence- Inhibiting Factor In Humans. Blood 1990; 76:2368-73.
  • Evangelista V, Rajtar G, Gaetano G et al. Platelet Activation by FMLP-Stimulated Polymorphonuclear Leukocytes: The Activity of Catepsin G ıs not Prevented by Antiproteinases. Blood 1991; 77:2379-88.
  • Yan Z, Zhang J, Holt JC, et al. Structural Requirements of Platelet Chemokines for Neutrophil Activation. Blood 1994; 84:2329-39.
  • Renesto P, Tahar MS, Chıgnard M. Modulation by superoxide anions of neutrophil-mediated platelet activation. Biochem Pharmacol 1994; 47:1401-1404.
  • Ersöz G, Ocakçıoğlu B, Baştuğ M et al. Platelet Agregation and Release Function in Hyperbaric Oxygenation. Undersea and Hyperbaric Medical Society 1998; 229-32.
  • Aziz KA, Cawley JC, Kamıgutı AS et al. Degradation of Platelet Glycoprotein Ib by Elastase Released from Primed Neutrophils. Br J Haematol 1995; 91:46-54.

Trombosit-lökosit fonksiyonel etkileşiminin in-vitro koşullarda incelenmesi

Yıl 2005, , 51 - 56, 01.02.2005
https://doi.org/10.1501/Tipfak_0000000149

Öz

Amaç: Trombositler ve nötrofiller hemostatik ve inflamatuvar cevapların önemli hücreleridir. Nötrofillerin serbest oksijen radikalleri aracılığı ile doku faktörü üretimi ve trombosit aktivasyonunu düzenleyerek ateroskleroz ve tromboz patogenezinde önemli rol oynayabileceği vurgulanmaktadır. Diğer yandan trombositlerin de inflamasyonda rolü olabileceği düşünülmektedir. Sunulan çalışmada sağlıklı genç erişkinlerden alınan kan örneklerinde trombosit-nötrofil fonksiyonel etkileşiminin in-vitro koşullarda araştırılması planlanmıştır.Gereç ve Yöntem: 19 ile 26 yaşları arasında, sağlıklı 14 erkek gönüllü çalışmaya alındı. Çalışmanın ilk aşamasında trombositten zengin plazmaya eklenen nötrofil süspansiyonunun impedans tekniği ile ölçülen hücreler arası agregasyona etkisi araştırıldı. İkinci aşamada trombinle inkübe edilen trombositlerden elde edilen süpernatantın nötrofil süspansiyonunda agregasyona ve kemiluminesansa etkisi araştırıldı. İmpedans tekniği kullanılarak değerlendirilen nötrofil agregasyonu ve lumi-agregometre kullanılarak nötrofil kemiluminesansı ölçüldü. Üçüncü aşamada N-formyl-Lmethionyl-L-Leucyl-L-Phenylalanine (FMLP) ile uyarılan nötrofillerden elde edilen süpernatantın trombosit süspansiyonunda agregasyon ve ATP sekresyonu üzerine etkisi araştırıldı.Bulgular: Çalışmanın ilk aşamasında yüzeye (elektrodlara) tutunmuş trombositlere nötrofil eklenmesinin agregasyon şiddeti üzerine etki göstermediği gözlendi. İkinci aşamada trombinle inkübe edilen trombositlerin sekretuvar ürünlerinin nötrofil agregasyonunu azalttığı (p < 0.05), oysa nötrofil kemiluminesansını artırdığı (p < 0.05) saptandı. Çalışmanın üçüncü aşamasında FMLP ile uyarılan nötrofillerden elde edilen süpernatantın trombosit agregasyonu ve ATP sekresyonu üzerine etkisinin olmadığı saptandı.Sonuç: Sunulan çalışma trombosit kökenli ürünlerin nötrofil fonksiyonlarını etkilediğini gösterdi. Çok basamaklı ve karmaşık bir süreç olan nötrofil aktivasyonunda bu ürünlerin rollerinin ayrı ayrı incelenmesi gerektiği sonucuna varıldı.

Kaynakça

  • Maschio D, Dejena E, Bazzoni G. Bidirectional modulation of platelet and polymorphonuclear leukocyte activities. Ann Hematol 1993; 67:23-31.
  • Cadrey Y, Dupovy D, Boneu B et al. Polymorphonulear leukocytes modulate tissue factor production by mononuclear cells: role of reactive oxygen species. J Immunol 2000; 164:3822-3828.
  • Klebanoffs CRA. Neutrophil-platelet interaction mediated by myeloperoxidase and hydrogen peroxidase. J Immunol 1980; 124:399.
  • Brandt E et all. The (TG and PF4; blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. Leukoc Biol 2000; 67:471-478.
  • Ehlert JE et all. Down-regulation of neutrophil functions by the ELR(+) CXC chemokine platelet basic protein. Blood 2000; 96:2965-2972.
  • Napota K et all. Activated platelets induce superoxide anion release by monocytes and neutrophils P-selectin. J Immunol 1993; 151:3267-3273.
  • Ruf A. et al. Contact-induced neutrophil activation by platelets in human cell suspensions and whole blood. The American Society of Hematology 1992; 80:1238-46.
  • Ruf A. et al. Platelet-induced neutrophil activation: platelet- expressed Şbrinogen induces the oxidative burst in neutrophils by an interaction with CD11c/CD18. Br J Haematol, 1995; 90:791- 96.
  • Aziz KA, Cawley JC, Zuzel M. Platelets prime PNL via released PF4. mechanism of priming and synergy with GM-CSF. British Journal of Haematology 1995; 91:846-853.
  • Packham MA, Kinlough-Rathbone RL, Mustard JF. Thromboxane A2 Causes Feedback AmpliŞcation Involving Extensive Thromboxane A2 Formation on Close Contact of Human Platelets in Media With a Low Concentration of Ionized Calcium. Blood 1987; 70:647-51.
  • Boyum A. Separation of lymphocytes, granulocytes, and monocytes from human blood using iodinated density gradient media. Methods In Enzymology . 1984; 108:88-102.
  • Krajian A. In: Frankel S, Reitman S. Editors. Tissue Staining Methods In Gradwohl’s Clinical Laboratory Methods and Diagnosis. Eds Sixth Edition Volum 2. London: The C. V. Mosby Company; 1963; pp1691.
  • Cardinal DC, Flower RJ. The electronic aggregometer: A novel device for assesing platelet behaviour in blood. J Pharmacol Met 1980; 3:135-158.
  • Phillips DR, Jennings LK, Edwards HH. IdentiŞcation of membran proteins mediating the interaction of human platelets. J Cell Biol 1980; 86:77-86.
  • Bednar, MM, Gross CE. Simple Whole Blood Procedure for Neutrophil Aggregation & Chemiluminescence with the Chrono- Log Whole Blood Lumi-Aggregometer. Chrono-Log Corporation News, 2001; 2-5.
  • Allen R. Phagocytic Leukocyte Oxygenation Activities and Chemiluminescence: A Kinetic Approach to Analysis. Methods In Enzymology 1986; 133:449-93.
  • Sweeney JD, Labuzetta JW, Michielson CE et al. Whole Blood Aggregation Using Impedance and Particle Counter Methods. Am J Clin Pathol 1989; 92:794-7.
  • Williams W, Beutler E, Erslew A, et al. Platelet morphology and function. In Heamatology, 4th Edition. USA McGrav-Hill Book Company; 1991; 1172.
  • Wojenski C, Silver MJ. A Quick Method for screening platelet Dysfunctions Using the Whole Blood Lumi- aggregometer. Thromb Haemostas 1984; 5:154-156.
  • DeChalet LR, Long GD, Shirly PS et al. Mechanism of the luminol-dependent chemiluminescence of human neutrophils. J Immunol 1982; 129:1589-1593.
  • Simon SI, Rochon YP, Lynam EB et al. (2-Integrin and L-Selectin are Obligatory Receptors In Neutrophil Aggregation. Blood 1993; 82:1097-1106.
  • Ostrovsky L, King AJ, Bond S et al. Juxtacrine Mechanism for Neutrophil Adhesion on Platelets InvolvesPlatelet-Activating Factor and a Selectin-Dependent Activation Process. The American Society of Hematology 1998; 91:3028-36.
  • Kuijper PHM, Torres HI, Van der Linden J AM et al. Platelet- Dependent Primary Hemostasis Promotes Selectin-and Integrin- Mediated Neutrophil Adhesion to Damaged Endothelium Under Flow Conditions. Blood 1996; 87:3271-81.
  • Maschio AD, Corvazier E, Maillet F et al. Platelet-dependent Induction and AmpliŞcation of Polymorphonuclear Leucocyte Lysosomal Enzyme Release. Br J Haematol 1989; 72:329-35.
  • Drabikova K, Jancinova V, Nosal R, et al. Human Blood Platelets, PNL Leukocytes and Their Interaction In Vitro. Responses to Selective and Non-selective Stimuli. Gen Physiol Biophys 2000; 19:393-404.
  • Nagata K, Tsuji T, Todoroki N et al. Activated Platelets Induce Superoxide Anion Release by Monocytes Neutrophils Through P-Selectin (CD62). J Immunol 1993; 151:3267-73.
  • Peterson F, Bock L, Flad HD et al. Platelet Factor 4-Induced Neutrophil-Endothelial Cell Interaction: Involvement of Mechanims and Functional Consequences Different From Those Elicited by Interleukin-8. Blood 1999; 94:4020-28.
  • Petersen F, Ludwing A, Flad HD et al. TNF-(Renders Human Neutrophils Responsive to Platelet Factor 4 (Comparison of PF-4 and IL-8 Reveals Different Activity ProŞles of the Two Chemokines). J of Immunuol 1996; 156:1954-62.
  • Iwabuchi K, Yamashita T. Platelet-Derived Neutrophil Adherence- Inhibiting Factor In Humans. Blood 1990; 76:2368-73.
  • Evangelista V, Rajtar G, Gaetano G et al. Platelet Activation by FMLP-Stimulated Polymorphonuclear Leukocytes: The Activity of Catepsin G ıs not Prevented by Antiproteinases. Blood 1991; 77:2379-88.
  • Yan Z, Zhang J, Holt JC, et al. Structural Requirements of Platelet Chemokines for Neutrophil Activation. Blood 1994; 84:2329-39.
  • Renesto P, Tahar MS, Chıgnard M. Modulation by superoxide anions of neutrophil-mediated platelet activation. Biochem Pharmacol 1994; 47:1401-1404.
  • Ersöz G, Ocakçıoğlu B, Baştuğ M et al. Platelet Agregation and Release Function in Hyperbaric Oxygenation. Undersea and Hyperbaric Medical Society 1998; 229-32.
  • Aziz KA, Cawley JC, Kamıgutı AS et al. Degradation of Platelet Glycoprotein Ib by Elastase Released from Primed Neutrophils. Br J Haematol 1995; 91:46-54.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ali Yakaryılmaz Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2005
Yayımlandığı Sayı Yıl 2005

Kaynak Göster

APA Yakaryılmaz, A. (2005). Trombosit-lökosit fonksiyonel etkileşiminin in-vitro koşullarda incelenmesi. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 58(2), 51-56. https://doi.org/10.1501/Tipfak_0000000149
AMA Yakaryılmaz A. Trombosit-lökosit fonksiyonel etkileşiminin in-vitro koşullarda incelenmesi. Ankara Üniversitesi Tıp Fakültesi Mecmuası. Şubat 2005;58(2):51-56. doi:10.1501/Tipfak_0000000149
Chicago Yakaryılmaz, Ali. “Trombosit-lökosit Fonksiyonel etkileşiminin in-Vitro koşullarda Incelenmesi”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 58, sy. 2 (Şubat 2005): 51-56. https://doi.org/10.1501/Tipfak_0000000149.
EndNote Yakaryılmaz A (01 Şubat 2005) Trombosit-lökosit fonksiyonel etkileşiminin in-vitro koşullarda incelenmesi. Ankara Üniversitesi Tıp Fakültesi Mecmuası 58 2 51–56.
IEEE A. Yakaryılmaz, “Trombosit-lökosit fonksiyonel etkileşiminin in-vitro koşullarda incelenmesi”, Ankara Üniversitesi Tıp Fakültesi Mecmuası, c. 58, sy. 2, ss. 51–56, 2005, doi: 10.1501/Tipfak_0000000149.
ISNAD Yakaryılmaz, Ali. “Trombosit-lökosit Fonksiyonel etkileşiminin in-Vitro koşullarda Incelenmesi”. Ankara Üniversitesi Tıp Fakültesi Mecmuası 58/2 (Şubat 2005), 51-56. https://doi.org/10.1501/Tipfak_0000000149.
JAMA Yakaryılmaz A. Trombosit-lökosit fonksiyonel etkileşiminin in-vitro koşullarda incelenmesi. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2005;58:51–56.
MLA Yakaryılmaz, Ali. “Trombosit-lökosit Fonksiyonel etkileşiminin in-Vitro koşullarda Incelenmesi”. Ankara Üniversitesi Tıp Fakültesi Mecmuası, c. 58, sy. 2, 2005, ss. 51-56, doi:10.1501/Tipfak_0000000149.
Vancouver Yakaryılmaz A. Trombosit-lökosit fonksiyonel etkileşiminin in-vitro koşullarda incelenmesi. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 2005;58(2):51-6.