Araştırma Makalesi
BibTex RIS Kaynak Göster

Transient Analysis of Double Layer Metal-Gas-Dielectric-Metal DBD Cell

Yıl 2017, Cilt: 5 Sayı: 1, 14 - 21, 28.02.2016

Öz

The investigation of Dielectric Barrier Discharges (DBD) in the absence of breakdown has significance in the perspective of the technological processes based on discharge phenomena and high voltage techniques. This study carries out transient analyses for the temporal evolution of electrical field, space charge density, polarization current while charging experimental Metal-Gas-Dielectric-Metal (MGDM) DBD cell. For these proposes, a theoretical model based on current continuity and two-layer polarization mechanism is developed for the investigation of an experimental MGDM electrodes system. In the steady state, the model obeys energy conservation law. Analysis results are discussed on the basis of experimental current measurements to explain pulsed DBD current.

Kaynakça

  • [1] Bogaerts A., Neyts E., Gijbels R., Vander Mullen J. Gas discharge plasmas and their applications, Spectrochimica Acta Part B: Atomic Spect. Vol.57, pp.609-658 (2002). [2] Napartovich A.P. Overview of atmospheric pressure discharges producing non-thermal plasma, Plasmas Polym. Vol.6, pp.1-14, (2001). [3] Takaki K., Shimizu M., Mukaigawa S., Fujiwara T. Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removal, IEEE Trans. Plasma Sci. Vol.32 pp.32-38, (2004). [4] Hepburn D.M., Kemp I.J., Richardson R.T., Shields A.J. Role of electrode material in partial discharge chemistry, Proceedings of the IEEE Fifth International Conference on Conduction and Breakdown in Solid Dielectrics, July 10–13 pp.605-610 (1995). [5] Bhowmik S., Jana P., Chaki T.K., Ray S. Surface modification of PP under different electrodes of DC glow discharge and its physicochemical characteristics, Surf. Coat Technol. Vol.185 pp.81- 91(2004). [6] Dilecce G., Ambrico P.F., De Benedictis S. N2 density measurement in a dielectric barrier discharge in N2 and N2 with small O2 admixtures, Plasma Sources Sci. Technol. Vol.165, pp.11–522 (2007). [7] Golubovskii Y.B., Maiorov V.A., Li P., Lindmayer M. Effect of the barrier material in a Townsend barrier discharge in nitrogen at atmospheric pressure, Journal of Phys. D: Appl. Phys. Vol.39, pp.1574- 1583 (2006). [8] Alisoy H.Z., Baysar A., Alisoy G.T. Physico-mathematical analysis of surface modification of polymers by glow discharge in SF6+N2 medium, Physica A: Statistical Mechanics and its Appl. Vol.351 pp.347–357 (2005). [9] Massines F., Gouda G., A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure, Journal of Physics D: Applied Phys. 313, pp.411-3420 (1998). [10] Amirov I.I., Izyumov M.O. Reactive ion etching of polymer films in an oxygen inductively coupled radiofrequency-discharge plasma, High Energy Chem. Vol.33,pp.119-123 (1999). [11] Juvarly C.M., Aliyev (Alisoy) H.Z., Gorin Yu.V., Leonov P.V. On the role of the negative ions in the modification of the surface by electrical discharge, J. Surface Engineering and Applied Electrochem. Vol.138 pp.39-41 (1987). [12] Juvarly C.M., Gorin Yu.V., Leonov P.V., Aliyev (Alisoy), H.Z. Process, Destruction and Stabilization of Polymer Materials, Proceedings of the Symposium on, IFRON, Dushanbe, 226 (1983). [13] G.M. Sessler, Ed., Electrets, Berlin, Heidelberg, New York, (1980). [14] Razevig D.V. High voltage engineering, Khanna Publishers, (1972). [15] Bednara N., Matovićb J., Stojanovića G. Properties of surface dielectric barrier discharge plasma generator for fabrication of nano materials, J. Electrostat. Vol71 pp.1068–1075(2013). [16] Kriegseis J., Möller B., Grundmann S., Tropea C., Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators, Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators, J. Electrostat. Vol. 69, pp.302–312 (2011). [17] Roth J.R. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma, Physics of Plasmas, Vol.10 pp.1166–1172 (2003). [18] Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J., Hayes J. Mechanisms of plasma actuators for hypersonic flow control, Progress in Aerospace Sci. Vol.41 pp.642–668 (2005). [19] Li Y., Zhang X., Huang X. The Use of Plasma Actuators for Bluff Body Broadband Noise Control, Experiments in Fluids, Vol.49, pp.367–377 (2010). [20] Honga D., Rabata H., Pub Y.K., Leroyc A. Measurement of the surface charging of a plasma actuator using surface DBD, Journal of Electrost. Vol.71 pp.547–550 (2013). [21] Shkurenkov I.A., Mankelevich Y.A., Rakhimova T.V. Two-dimensional simulation of an atmospheric-pressure RF DBD in a H2 : O2 mixture: discharge structures and plasma chemistry, Plasma Sources Sci. Technol. 22 (2013) 015021. [22] Hoskinson A.R., Hershkowitz N. Double DBD Plasma Actuator Simulations and Experiments in Quiescent Air, Plasma Science, IEEE 34th International Conference on, (2007). [23] Flores-Fuentes A.A., Peña-Eguiluz R., López-Callejas R., Mercado-Cabrera A., Valencia A. R., Barocio S.R., Godoy-Cabrera O.G., Piedad-Beneitez A. de la, Benítez-Read J.S., Pacheco-Sotelo J.O., Modelling and simulation of a DBD plasma discharge supplied by a multicell inverter, In Proceedings of the 25th IASTED international conference on Modeling, identification, and control (MIC'06), M. H. Hamza (Ed.). ACTA Press, Anaheim, CA, USA, pp.249-254 (2006). [24] Alisoy H.Z., Alagoz S., Alisoy G.T., Alagoz B.B., An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap, Plasma Sci. Technol. Vol.15: pp.1012-1019 (2013). [25] Kuchinskii G.S., Partial Discharge in High Voltage Constructions, L. Energy, 1979.
Yıl 2017, Cilt: 5 Sayı: 1, 14 - 21, 28.02.2016

Öz

Kaynakça

  • [1] Bogaerts A., Neyts E., Gijbels R., Vander Mullen J. Gas discharge plasmas and their applications, Spectrochimica Acta Part B: Atomic Spect. Vol.57, pp.609-658 (2002). [2] Napartovich A.P. Overview of atmospheric pressure discharges producing non-thermal plasma, Plasmas Polym. Vol.6, pp.1-14, (2001). [3] Takaki K., Shimizu M., Mukaigawa S., Fujiwara T. Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removal, IEEE Trans. Plasma Sci. Vol.32 pp.32-38, (2004). [4] Hepburn D.M., Kemp I.J., Richardson R.T., Shields A.J. Role of electrode material in partial discharge chemistry, Proceedings of the IEEE Fifth International Conference on Conduction and Breakdown in Solid Dielectrics, July 10–13 pp.605-610 (1995). [5] Bhowmik S., Jana P., Chaki T.K., Ray S. Surface modification of PP under different electrodes of DC glow discharge and its physicochemical characteristics, Surf. Coat Technol. Vol.185 pp.81- 91(2004). [6] Dilecce G., Ambrico P.F., De Benedictis S. N2 density measurement in a dielectric barrier discharge in N2 and N2 with small O2 admixtures, Plasma Sources Sci. Technol. Vol.165, pp.11–522 (2007). [7] Golubovskii Y.B., Maiorov V.A., Li P., Lindmayer M. Effect of the barrier material in a Townsend barrier discharge in nitrogen at atmospheric pressure, Journal of Phys. D: Appl. Phys. Vol.39, pp.1574- 1583 (2006). [8] Alisoy H.Z., Baysar A., Alisoy G.T. Physico-mathematical analysis of surface modification of polymers by glow discharge in SF6+N2 medium, Physica A: Statistical Mechanics and its Appl. Vol.351 pp.347–357 (2005). [9] Massines F., Gouda G., A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure, Journal of Physics D: Applied Phys. 313, pp.411-3420 (1998). [10] Amirov I.I., Izyumov M.O. Reactive ion etching of polymer films in an oxygen inductively coupled radiofrequency-discharge plasma, High Energy Chem. Vol.33,pp.119-123 (1999). [11] Juvarly C.M., Aliyev (Alisoy) H.Z., Gorin Yu.V., Leonov P.V. On the role of the negative ions in the modification of the surface by electrical discharge, J. Surface Engineering and Applied Electrochem. Vol.138 pp.39-41 (1987). [12] Juvarly C.M., Gorin Yu.V., Leonov P.V., Aliyev (Alisoy), H.Z. Process, Destruction and Stabilization of Polymer Materials, Proceedings of the Symposium on, IFRON, Dushanbe, 226 (1983). [13] G.M. Sessler, Ed., Electrets, Berlin, Heidelberg, New York, (1980). [14] Razevig D.V. High voltage engineering, Khanna Publishers, (1972). [15] Bednara N., Matovićb J., Stojanovića G. Properties of surface dielectric barrier discharge plasma generator for fabrication of nano materials, J. Electrostat. Vol71 pp.1068–1075(2013). [16] Kriegseis J., Möller B., Grundmann S., Tropea C., Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators, Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators, J. Electrostat. Vol. 69, pp.302–312 (2011). [17] Roth J.R. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma, Physics of Plasmas, Vol.10 pp.1166–1172 (2003). [18] Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J., Hayes J. Mechanisms of plasma actuators for hypersonic flow control, Progress in Aerospace Sci. Vol.41 pp.642–668 (2005). [19] Li Y., Zhang X., Huang X. The Use of Plasma Actuators for Bluff Body Broadband Noise Control, Experiments in Fluids, Vol.49, pp.367–377 (2010). [20] Honga D., Rabata H., Pub Y.K., Leroyc A. Measurement of the surface charging of a plasma actuator using surface DBD, Journal of Electrost. Vol.71 pp.547–550 (2013). [21] Shkurenkov I.A., Mankelevich Y.A., Rakhimova T.V. Two-dimensional simulation of an atmospheric-pressure RF DBD in a H2 : O2 mixture: discharge structures and plasma chemistry, Plasma Sources Sci. Technol. 22 (2013) 015021. [22] Hoskinson A.R., Hershkowitz N. Double DBD Plasma Actuator Simulations and Experiments in Quiescent Air, Plasma Science, IEEE 34th International Conference on, (2007). [23] Flores-Fuentes A.A., Peña-Eguiluz R., López-Callejas R., Mercado-Cabrera A., Valencia A. R., Barocio S.R., Godoy-Cabrera O.G., Piedad-Beneitez A. de la, Benítez-Read J.S., Pacheco-Sotelo J.O., Modelling and simulation of a DBD plasma discharge supplied by a multicell inverter, In Proceedings of the 25th IASTED international conference on Modeling, identification, and control (MIC'06), M. H. Hamza (Ed.). ACTA Press, Anaheim, CA, USA, pp.249-254 (2006). [24] Alisoy H.Z., Alagoz S., Alisoy G.T., Alagoz B.B., An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap, Plasma Sci. Technol. Vol.15: pp.1012-1019 (2013). [25] Kuchinskii G.S., Partial Discharge in High Voltage Constructions, L. Energy, 1979.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Gulizar Alısoy

Fevzi Hansu

Baris Baykant Alagoz

Hafiz Z. Alisoy

Yayımlanma Tarihi 28 Şubat 2016
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 1

Kaynak Göster

APA Alısoy, G., Hansu, F., Alagoz, B. B., Alisoy, H. Z. (2016). Transient Analysis of Double Layer Metal-Gas-Dielectric-Metal DBD Cell. Balkan Journal of Electrical and Computer Engineering, 5(1), 14-21.

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı