Research Article
BibTex RIS Cite

FSRFT Based Broadband Double Matching via Passband Extremums Determination

Year 2018, Volume: 6 Issue: 3, 165 - 171, 31.07.2018
https://doi.org/10.17694/bajece.421266

Abstract

Fast simplified real frequency technique (FSRFT)
is a numerical solver used to solve microwave broadband double-matching (DM)
circuit design problems in a much faster and effective manner. Recently, it has
been reported that an FSRFT based Matlab code can complete the design of a
 order
lowpass lumped element double matching network to match a given generator and
load impedance within an optimization time of only 0.6 seconds, a 47 fold less time
than that of the same design done using the classical simplified real frequency
technique (SRFT). FSRFT owes this superior speed performance to the fact that
it tracks only
 (system
unknowns
 plus 1) number
of passband extremum points selected from among the
 number of
gain data (
). This work introduces a simple numerical
technique called PED (passband extremums determination technique) to be used in
determination of these passband extremum points (PEs). An exemplary
 order microwave
bandpass DM circuit design using FSRFT based Matlab (of Mathworks Inc.) code
and the simulation of this design via MWO (of AWR Corp.) has yielded the same
circuit performance with an exact agreement. Thus, FSRFT, equipped with the PED,
newly proposed hereby, might be used as a powerful solver in designing
broadband circuits in many fields such as RF/microwave, radar, and communications.

References

  • [1] R. Kopru, “FSRFT—fast simplified real frequency technique via selective target data approach for broadband double matching”, IEEE Transactions on circuits and systems-II: Express briefs, Vol. 64, No. 2, february 2017, pp.141-145.
  • [2] Matlab, https://www.mathworks.com Mathworks Inc., MA., USA, retrieved on april 8, 2018.
  • [3] MWO www.awrcorp.com, AWR Corp, retrieved on april 8, 2018.
  • [4] H. J. Carlin, “A new approach to gain-bandwidth problems,” IEEE Trans. Circuits Syst., vol. 24, no. 4, pp. 170-175, Apr. 1977.
  • [5] B. S. Yarman, “Broadband matching a complex generator to a complex load,” Ph.D. dissertation, ECE Dept. Cornell Univ., NY, USA, 1982.
  • [6] B. S. Yarman, Design of Ultra Wideband Antenna Matching Networks Via Simplified Real Frequency Techniques, Netherlands: Springer, 2008, pp. 183-225.
  • [7] B. S. Yarman, Design of Ultra Wideband Power Transfer Networks, 1st ed., Chichester, UK.: John Wiley & Sons Ltd., 2010.
  • [8] W. K. Chen, Broadband Matching:Theory and Implementations, 3rd ed., World Scientific, ISBN: 978-9971-5-0219-5, Nov. 1998.
  • [9] Y. S. Zhu, W. K. Chen, Computer-Aided Design of Communication Networks, World Scientific, ISBN: 978-981-02-2351-9, April 2000.
  • [10] B. S. Yarman and H. J. Carlin, “A simplified real frequency technique applied to broad-band multistage microwave amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 30, no. 12, pp. 2216-2222, Dec. 1982.
  • [11] L. Zhu, B. Wu, and C. Sheng, ”Real frequency technique applied to synthesis of broad-band matching networks with arbitrary nonuniform losses for MMICs,” IEEE Trans. Microw. Theory Techn., vol. 36, no. 12, pp. 1614–1620, Dec. 1988.
  • [12] P. Jarry and A. Perennec, “Optimization of gain and VSWR in multistage microwave amplifier using real frequency method,” in Proc. ECCTD, Paris, FR., 1987, pp. 203–208.
  • [13] R. Kopru, H. Kuntman, and B. S. Yarman, “On numerical design technique of wideband microwave amplifiers based on GaN small-signal model,” Analog Integr. Circ. Sig. Procc., vol. 81, no. 1, pp. 71-87, Jul. 2014.
  • [14] G. Sun and R. H. Jansen, “Broadband doherty power amplifier via real frequency technique,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 99-111, Jan. 2012.
  • [15] N. Tuffy, L. Guan, A. Zhu, and T. J. Brazil, “A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no.6, pp. 1952-1963, Jun. 2012.
  • [16] Y. Sun and X. Zhu, “Broadband continuous class-F-1 amplifier with modified harmonic-controlled network for advanced long term evolution application,” IEEE Microw.Compon. Lett., vol. 25, no.4, pp. 250-252, Jun. 2015.
  • [17] L. Ma, J. Zhou, and W. Huang, “A broadband highly efficient harmonic-tuned power amplifier exploiting compact matching network,” IEEE Microw.Compon. Lett., vol. 25, no.11, pp. 250-252, Nov. 2015.
  • [18] R. Kopru, H. Kuntman and B. S. Yarman, “Novel approach to design ultra wideband microwave amplifiers: normalized gain function method”. Vol. 22, No. 3, pp. 672-686, September 2013, Radioengineering.
  • [19] R. Kopru, S. Kılınç, C. Aydın, D. C. Atilla, C. Karakuş, B. S. Yarman, “Ultra wideband matching network design for a V-shaped square planar monopole antenna”, International Journal of Microwave and Wireless Technologies, Cambridge Univ. Press, 2014, volume 6, issue 06, pp. 555-564.
  • [20] R. Kopru, S. Kilinc, A. Aksen, and B. S. Yarman, “Design and implementation of wideband microwave amplifiers based on normalized gain function”, BenMAS2014, 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-Systems, Radar, Telecommunications, and Biomedical Applications, September 27, 2014, Philadelphia, Pennsylvania, USA.
  • [21] M. Sengul, “Design of practical broadband matching networks with lumped elements,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 9, pp. 552-556, Sep. 2013.
  • [22] A. Kılınç and B. S. Yarman, “High precision LC ladder synthesis part I: Lowpass ladder synthesis via parametric approach,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2074-2083, Aug. 2013.
  • [23] B. S. Yarman, and A. Kılınç, “High precision LC ladder synthesis part II: Immitance synthesis with transmission zeros at DC and infinity,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 10, pp. 2719-2729, Oct. 2013.
  • [24] B. S. Yarman, A. Aksen, R. Kopru, N. Kumar, C. Aydin, D. C. Atilla, P. Chacko, “Computer aided Darlington synthesis of an all purpose immittance function”, IU-JEEE Istanbul University Journal of Electrical and Electronıcs Engıneering, Vol. 16, No. 1, pp. 2027-2037, 2016.
Year 2018, Volume: 6 Issue: 3, 165 - 171, 31.07.2018
https://doi.org/10.17694/bajece.421266

Abstract

References

  • [1] R. Kopru, “FSRFT—fast simplified real frequency technique via selective target data approach for broadband double matching”, IEEE Transactions on circuits and systems-II: Express briefs, Vol. 64, No. 2, february 2017, pp.141-145.
  • [2] Matlab, https://www.mathworks.com Mathworks Inc., MA., USA, retrieved on april 8, 2018.
  • [3] MWO www.awrcorp.com, AWR Corp, retrieved on april 8, 2018.
  • [4] H. J. Carlin, “A new approach to gain-bandwidth problems,” IEEE Trans. Circuits Syst., vol. 24, no. 4, pp. 170-175, Apr. 1977.
  • [5] B. S. Yarman, “Broadband matching a complex generator to a complex load,” Ph.D. dissertation, ECE Dept. Cornell Univ., NY, USA, 1982.
  • [6] B. S. Yarman, Design of Ultra Wideband Antenna Matching Networks Via Simplified Real Frequency Techniques, Netherlands: Springer, 2008, pp. 183-225.
  • [7] B. S. Yarman, Design of Ultra Wideband Power Transfer Networks, 1st ed., Chichester, UK.: John Wiley & Sons Ltd., 2010.
  • [8] W. K. Chen, Broadband Matching:Theory and Implementations, 3rd ed., World Scientific, ISBN: 978-9971-5-0219-5, Nov. 1998.
  • [9] Y. S. Zhu, W. K. Chen, Computer-Aided Design of Communication Networks, World Scientific, ISBN: 978-981-02-2351-9, April 2000.
  • [10] B. S. Yarman and H. J. Carlin, “A simplified real frequency technique applied to broad-band multistage microwave amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 30, no. 12, pp. 2216-2222, Dec. 1982.
  • [11] L. Zhu, B. Wu, and C. Sheng, ”Real frequency technique applied to synthesis of broad-band matching networks with arbitrary nonuniform losses for MMICs,” IEEE Trans. Microw. Theory Techn., vol. 36, no. 12, pp. 1614–1620, Dec. 1988.
  • [12] P. Jarry and A. Perennec, “Optimization of gain and VSWR in multistage microwave amplifier using real frequency method,” in Proc. ECCTD, Paris, FR., 1987, pp. 203–208.
  • [13] R. Kopru, H. Kuntman, and B. S. Yarman, “On numerical design technique of wideband microwave amplifiers based on GaN small-signal model,” Analog Integr. Circ. Sig. Procc., vol. 81, no. 1, pp. 71-87, Jul. 2014.
  • [14] G. Sun and R. H. Jansen, “Broadband doherty power amplifier via real frequency technique,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 99-111, Jan. 2012.
  • [15] N. Tuffy, L. Guan, A. Zhu, and T. J. Brazil, “A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no.6, pp. 1952-1963, Jun. 2012.
  • [16] Y. Sun and X. Zhu, “Broadband continuous class-F-1 amplifier with modified harmonic-controlled network for advanced long term evolution application,” IEEE Microw.Compon. Lett., vol. 25, no.4, pp. 250-252, Jun. 2015.
  • [17] L. Ma, J. Zhou, and W. Huang, “A broadband highly efficient harmonic-tuned power amplifier exploiting compact matching network,” IEEE Microw.Compon. Lett., vol. 25, no.11, pp. 250-252, Nov. 2015.
  • [18] R. Kopru, H. Kuntman and B. S. Yarman, “Novel approach to design ultra wideband microwave amplifiers: normalized gain function method”. Vol. 22, No. 3, pp. 672-686, September 2013, Radioengineering.
  • [19] R. Kopru, S. Kılınç, C. Aydın, D. C. Atilla, C. Karakuş, B. S. Yarman, “Ultra wideband matching network design for a V-shaped square planar monopole antenna”, International Journal of Microwave and Wireless Technologies, Cambridge Univ. Press, 2014, volume 6, issue 06, pp. 555-564.
  • [20] R. Kopru, S. Kilinc, A. Aksen, and B. S. Yarman, “Design and implementation of wideband microwave amplifiers based on normalized gain function”, BenMAS2014, 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-Systems, Radar, Telecommunications, and Biomedical Applications, September 27, 2014, Philadelphia, Pennsylvania, USA.
  • [21] M. Sengul, “Design of practical broadband matching networks with lumped elements,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 9, pp. 552-556, Sep. 2013.
  • [22] A. Kılınç and B. S. Yarman, “High precision LC ladder synthesis part I: Lowpass ladder synthesis via parametric approach,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2074-2083, Aug. 2013.
  • [23] B. S. Yarman, and A. Kılınç, “High precision LC ladder synthesis part II: Immitance synthesis with transmission zeros at DC and infinity,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 10, pp. 2719-2729, Oct. 2013.
  • [24] B. S. Yarman, A. Aksen, R. Kopru, N. Kumar, C. Aydin, D. C. Atilla, P. Chacko, “Computer aided Darlington synthesis of an all purpose immittance function”, IU-JEEE Istanbul University Journal of Electrical and Electronıcs Engıneering, Vol. 16, No. 1, pp. 2027-2037, 2016.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Articlessi
Authors

Ramazan Kopru

Publication Date July 31, 2018
Published in Issue Year 2018 Volume: 6 Issue: 3

Cite

APA Kopru, R. (2018). FSRFT Based Broadband Double Matching via Passband Extremums Determination. Balkan Journal of Electrical and Computer Engineering, 6(3), 165-171. https://doi.org/10.17694/bajece.421266

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı