Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 7 Sayı: 3, 245 - 249, 30.07.2019
https://doi.org/10.17694/bajece.551790

Öz

Kaynakça

  • [1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 38),” Prog. Photovoltaics Res. Appl., vol. 19, no. 5, pp. 565–572, Aug. 2011.[2] A. C. Turkmen and C. Celik, “Energy harvesting with the piezoelectric material integrated shoe,” Energy, vol. 150, pp. 556–564, May 2018.[3] A. R. M. Siddique, R. Rabari, S. Mahmud, and B. Van Heyst, “Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique,” Energy, vol. 115, pp. 1081–1091, Nov. 2016.[4] S. Keyrouz, H. Visser, and A. Tijhuis, “Multi-band simultaneous radio frequency energy harvesting,” Antennas Propag., no. Eucap, pp. 3058–3061, 2013.[5] J. Bito, S. Kim, M. Tentzeris, and S. Nikolaou, “Ambient Energy Harvesting from 2-way Talk-Radio Signals for ‘Smart’ Meter and Display Applications,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2014, pp. 1353–1354.[6] S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and M. M. Tentzeris, “Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms,” Proc. IEEE, vol. 102, no. 11, pp. 1649–1666, Nov. 2014.
  • [7] N. Barroca, H. M. Saraiva, P. T. Gouveia, J. Tavares, L. M. Borges, F. J. Velez, C. Loss, R. Salvado, P. Pinho, R. Goncalves, N. Borges Carvalho, R. Chavez-Santiago, and I. Balasingham, “Antennas and circuits for ambient RF energy harvesting in wireless body area networks,” in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013, pp. 532–537.[8] M. Cansiz, T. Abbasov, M. B. Kurt, and A. R. Celik, “Mobile measurement of radiofrequency electromagnetic field exposure level and statistical analysis,” Measurement, vol. 86, pp. 159–164, May 2016.[9] P. Baltrėnas and R. Buckus, “Measurements and analysis of the electromagnetic fields of mobile communication antennas,” Measurement, vol. 46, no. 10, pp. 3942–3949, Dec. 2013.[10] M. Pinuela, P. D. Mitcheson, and S. Lucyszyn, “Ambient RF Energy Harvesting in Urban and Semi-Urban Environments,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 7, pp. 2715–2726, Jul. 2013.[11] M. Cansiz, T. Abbasov, M. B. Kurt, and A. R. Celik, “Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health,” J. Expo. Sci. Environ. Epidemiol., vol. 28, no. 2, pp. 161–165, Nov. 2016.[12] F. T. Pachón-García, K. Fernández-Ortiz, and J. M. Paniagua-Sánchez, “Assessment of Wi-Fi radiation in indoor environments characterizing the time & space-varying electromagnetic fields,” Meas. J. Int. Meas. Confed., vol. 63, pp. 309–321, 2015.[13] A. Collado and A. Georgiadis, “Optimal Waveforms for Efficient Wireless Power Transmission,” IEEE Microw. Wirel. Components Lett., vol. 24, no. 5, pp. 354–356, May 2014.[14] M. S. Trotter, J. D. Griffin, and G. D. Durgin, “Power-optimized waveforms for improving the range and reliability of RFID systems,” in 2009 IEEE International Conference on RFID, 2009, pp. 80–87.[15] A. Collado and A. Georgiadis, “Improving wireless power transmission efficiency using chaotic waveforms,” in 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, pp. 1–3.[16] G. Andia Vera, D. Allane, A. Georgiadis, A. Collado, Y. Duroc, and S. Tedjini, “Cooperative Integration of Harvesting RF Sections for Passive RFID Communication,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 12, pp. 4556–4566, Dec. 2015.[17] J. F. Ensworth, S. J. Thomas, S. Y. Shin, and M. S. Reynolds, “Waveform-aware ambient RF energy harvesting,” in 2014 IEEE International Conference on RFID (IEEE RFID), 2014, pp. 67–73.[18] National Instruments, “www.ni.com/en-us.html.” .[19] Powercast, “P2110-EVB Evaluation Board for P2110 Powerharvester datasheet.”[20] Powercast Corporation, “www.powercastco.com” .

Radio Frequency Energy Harvesting with Different Antennas and Output Powers

Yıl 2019, Cilt: 7 Sayı: 3, 245 - 249, 30.07.2019
https://doi.org/10.17694/bajece.551790

Öz

 In this study, the effects of antenna types and
output powers on charging times of RF energy harvesting circuit were measured
and analyzed in detail. A measurement system which consisting of a signal
generator, an RF energy harvesting circuit, antennas and other devices was
installed for receiving the measurement samples. According to the measurement
results, the shortest charging time was obtained as 0.58 s at a distance of 20
cm, when 6.1 dBi antenna was connected to the RF energy harvesting circuit and
the output power of the signal generator was set to 17 dBm. In addition to
that, the longest charging time was evaluated as 25.01 s at a distance of 60
cm, when 1 dBi antenna was connected to the RF energy harvesting circuit and
the output power of the signal generator was adjust to 14 dBm. As a result, it
was determined that increasing of antenna gains and output powers and
shortening of distances between signal generator and RF energy harvesting
circuit decreased the charging times of the RF energy harvesting circuit in
this study.

Kaynakça

  • [1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 38),” Prog. Photovoltaics Res. Appl., vol. 19, no. 5, pp. 565–572, Aug. 2011.[2] A. C. Turkmen and C. Celik, “Energy harvesting with the piezoelectric material integrated shoe,” Energy, vol. 150, pp. 556–564, May 2018.[3] A. R. M. Siddique, R. Rabari, S. Mahmud, and B. Van Heyst, “Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique,” Energy, vol. 115, pp. 1081–1091, Nov. 2016.[4] S. Keyrouz, H. Visser, and A. Tijhuis, “Multi-band simultaneous radio frequency energy harvesting,” Antennas Propag., no. Eucap, pp. 3058–3061, 2013.[5] J. Bito, S. Kim, M. Tentzeris, and S. Nikolaou, “Ambient Energy Harvesting from 2-way Talk-Radio Signals for ‘Smart’ Meter and Display Applications,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2014, pp. 1353–1354.[6] S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and M. M. Tentzeris, “Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms,” Proc. IEEE, vol. 102, no. 11, pp. 1649–1666, Nov. 2014.
  • [7] N. Barroca, H. M. Saraiva, P. T. Gouveia, J. Tavares, L. M. Borges, F. J. Velez, C. Loss, R. Salvado, P. Pinho, R. Goncalves, N. Borges Carvalho, R. Chavez-Santiago, and I. Balasingham, “Antennas and circuits for ambient RF energy harvesting in wireless body area networks,” in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013, pp. 532–537.[8] M. Cansiz, T. Abbasov, M. B. Kurt, and A. R. Celik, “Mobile measurement of radiofrequency electromagnetic field exposure level and statistical analysis,” Measurement, vol. 86, pp. 159–164, May 2016.[9] P. Baltrėnas and R. Buckus, “Measurements and analysis of the electromagnetic fields of mobile communication antennas,” Measurement, vol. 46, no. 10, pp. 3942–3949, Dec. 2013.[10] M. Pinuela, P. D. Mitcheson, and S. Lucyszyn, “Ambient RF Energy Harvesting in Urban and Semi-Urban Environments,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 7, pp. 2715–2726, Jul. 2013.[11] M. Cansiz, T. Abbasov, M. B. Kurt, and A. R. Celik, “Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health,” J. Expo. Sci. Environ. Epidemiol., vol. 28, no. 2, pp. 161–165, Nov. 2016.[12] F. T. Pachón-García, K. Fernández-Ortiz, and J. M. Paniagua-Sánchez, “Assessment of Wi-Fi radiation in indoor environments characterizing the time & space-varying electromagnetic fields,” Meas. J. Int. Meas. Confed., vol. 63, pp. 309–321, 2015.[13] A. Collado and A. Georgiadis, “Optimal Waveforms for Efficient Wireless Power Transmission,” IEEE Microw. Wirel. Components Lett., vol. 24, no. 5, pp. 354–356, May 2014.[14] M. S. Trotter, J. D. Griffin, and G. D. Durgin, “Power-optimized waveforms for improving the range and reliability of RFID systems,” in 2009 IEEE International Conference on RFID, 2009, pp. 80–87.[15] A. Collado and A. Georgiadis, “Improving wireless power transmission efficiency using chaotic waveforms,” in 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, pp. 1–3.[16] G. Andia Vera, D. Allane, A. Georgiadis, A. Collado, Y. Duroc, and S. Tedjini, “Cooperative Integration of Harvesting RF Sections for Passive RFID Communication,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 12, pp. 4556–4566, Dec. 2015.[17] J. F. Ensworth, S. J. Thomas, S. Y. Shin, and M. S. Reynolds, “Waveform-aware ambient RF energy harvesting,” in 2014 IEEE International Conference on RFID (IEEE RFID), 2014, pp. 67–73.[18] National Instruments, “www.ni.com/en-us.html.” .[19] Powercast, “P2110-EVB Evaluation Board for P2110 Powerharvester datasheet.”[20] Powercast Corporation, “www.powercastco.com” .
Toplam 2 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Cansız 0000-0003-2534-9770

Yayımlanma Tarihi 30 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

APA Cansız, M. (2019). Radio Frequency Energy Harvesting with Different Antennas and Output Powers. Balkan Journal of Electrical and Computer Engineering, 7(3), 245-249. https://doi.org/10.17694/bajece.551790

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı