Araştırma Makalesi
BibTex RIS Kaynak Göster

Köklü Ağaçların Seviye Polinomları

Yıl 2024, , 72 - 83, 06.06.2024
https://doi.org/10.53070/bbd.1469625

Öz

Level index was introduced in 2017 for rooted trees which is a component of Gini index. In the origin, Gini index is a tool for economical investigations but Balaji and Mahmoud defined the graph theoretical applications of this index for statistical analysis of graphs. Level index is an important component of Gini index. In this paper we define a new graph polynomial which is called level polynomial and calculate the level polynomial of some classes of trees. We obtain some interesting relations between the level polynomials and some integer sequences.

Kaynakça

  • Gini, C. (1912), Veriabilità e Mutabilità. Cuppini, Bologna.
  • Balaji, H.; Mahmoud, H. (2017) The Gini Index of Random Trees with Applications to Caterpillars, J. Appl. Prob. 54: 701-709.
  • Domicolo, C.; Mahmoud, H.M. (2019) Degree Based Gini Index for Graphs, Probability in the Engineering and Informational Sciences 34 (2): 1-15.
  • Wiener, A.H. (1947) Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69: 17-20.
  • Hosoya, H. (1988) On some counting polynomials in chemistry, Discrete Applied Mathematics 19: 239-257.
  • Konstantinova, E.V.; Diudea, M.V. (2000) The Wiener Polynomial Derivatives and Other Topological Indices in Chemical Research, Croatica Chemica Acta 73 (2): 383-403.
  • Estrada, E.; Ovidiu, I.; Gutman, I; Gutierrez, A. (1998) Rodriguez, L.; Extended Wiener indices. A new set of descriptors for quantitative structure-property studies, New J. Chem, 819-822.
  • Dos ̌lic ́,T. (2008) The vertex-weighted Wiener polynomials for composite graphs, Ars Mathematica Contemporanea 1: 66-80.
  • Flajolet, P.; Prodinger, H. (1987) Level number sequences for trees, Discrete Mathematics 65: 149-156.
  • Tangora, M.C. (1991) Level number sequences for trees and the lambda algebra, Europen J. Combinatorics 12: 433-443.
  • Şahin, B.; Şener, Ü.G. (2020) Total domination type invariants of regular dendrimer. Celal Bayar University Journal of Science 16 (2): 225-228.
  • Sloane, N. J. and Ploufe, S. (1995) The Encyclopedia of Integer Sequences, Academic Press, http://oeis.org.

Level Polynomials of Rooted Trees

Yıl 2024, , 72 - 83, 06.06.2024
https://doi.org/10.53070/bbd.1469625

Öz

Level index was introduced in 2017 for rooted trees which is a component of Gini index. In the origin, Gini index is a tool for economical investigations but Balaji and Mahmoud defined the graph theoretical applications of this index for statistical analysis of graphs. Level index is an important component of Gini index. In this paper we define a new graph polynomial which is called level polynomial and calculate the level polynomial of some classes of trees. We obtain some interesting relations between the level polynomials and some integer sequences.

Kaynakça

  • Gini, C. (1912), Veriabilità e Mutabilità. Cuppini, Bologna.
  • Balaji, H.; Mahmoud, H. (2017) The Gini Index of Random Trees with Applications to Caterpillars, J. Appl. Prob. 54: 701-709.
  • Domicolo, C.; Mahmoud, H.M. (2019) Degree Based Gini Index for Graphs, Probability in the Engineering and Informational Sciences 34 (2): 1-15.
  • Wiener, A.H. (1947) Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69: 17-20.
  • Hosoya, H. (1988) On some counting polynomials in chemistry, Discrete Applied Mathematics 19: 239-257.
  • Konstantinova, E.V.; Diudea, M.V. (2000) The Wiener Polynomial Derivatives and Other Topological Indices in Chemical Research, Croatica Chemica Acta 73 (2): 383-403.
  • Estrada, E.; Ovidiu, I.; Gutman, I; Gutierrez, A. (1998) Rodriguez, L.; Extended Wiener indices. A new set of descriptors for quantitative structure-property studies, New J. Chem, 819-822.
  • Dos ̌lic ́,T. (2008) The vertex-weighted Wiener polynomials for composite graphs, Ars Mathematica Contemporanea 1: 66-80.
  • Flajolet, P.; Prodinger, H. (1987) Level number sequences for trees, Discrete Mathematics 65: 149-156.
  • Tangora, M.C. (1991) Level number sequences for trees and the lambda algebra, Europen J. Combinatorics 12: 433-443.
  • Şahin, B.; Şener, Ü.G. (2020) Total domination type invariants of regular dendrimer. Celal Bayar University Journal of Science 16 (2): 225-228.
  • Sloane, N. J. and Ploufe, S. (1995) The Encyclopedia of Integer Sequences, Academic Press, http://oeis.org.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nöral Ağlar
Bölüm PAPERS
Yazarlar

Bünyamin Şahin 0000-0003-1094-5481

Yayımlanma Tarihi 6 Haziran 2024
Gönderilme Tarihi 17 Nisan 2024
Kabul Tarihi 5 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Şahin, B. (2024). Level Polynomials of Rooted Trees. Computer Science, 9(Issue:1), 72-83. https://doi.org/10.53070/bbd.1469625

The Creative Commons Attribution 4.0 International License 88x31.png  is applied to all research papers published by JCS and

a Digital Object Identifier (DOI)     Logo_TM.png  is assigned for each published paper.