Araştırma Makalesi
BibTex RIS Kaynak Göster

Randomness Analysis With Runge Kutta Methods

Yıl 2021, , 53 - 60, 20.10.2021
https://doi.org/10.53070/bbd.990990

Öz

Chaotic systems are widely used in encryption because of their sensitivity to initial conditions and parameters, high ergodicity, mixing properties, and highly complex structures. Various analyzes are available to understand whether a system is chaotic. The most used analyzes are time series analysis, phase portraits, Lyapunov exponents, and bifurcation diagrams. Modeling of chaotic systems is also possible with numerical analysis methods. These methods are; Houses, Heun, 4th and 5th degree Runge Kutta methods are the most common differential solution methods.

Proje Numarası

(BAPB) FBG-2020-2143

Kaynakça

  • [1] E. M. Esin, “Knutt / Durstenfeld Shuffle Algoritmasının Resim Şifreleme Amacıyla Kullanılması,” Politek. Derg., vol. 12, no. 3, pp. 151–155, 2009, doi: 10.2339/2009.12.3.
  • [2] A. Akgül, M. Z. Yıldız, Ö. F. Boyraz, E. Güleryüz, S. Kaçar, and B. Gürevin, “Microcomputer-based encryption of vein images with a non-linear novel system,” J. Fac. Eng. Archit. Gazi Univ., vol. 35, no. 3, pp. 1369–1385, 2020, doi: 10.17341/GaziMfd.558379.
  • [3] H. Li, L. Deng, and Z. Gu, “A Robust Image Encryption Algorithm Based on a 32-bit Chaotic System,” IEEE Access, vol. 8, pp. 30127–30151, 2020, doi: 10.1109/ACCESS.2020.2972296.
  • [4] S. Chen, X. X. Zhong, and Z. Z. Wu, “Chaos block cipher for wireless sensor network,” Sci. China, Ser. F Inf. Sci., vol. 51, no. 8, pp. 1055–1063, 2008, doi: 10.1007/s11432-008-0102-5.
  • [5] X. Tong, Z. Wang, Y. Liu, M. Zhang, and L. Xu, “A novel compound chaotic block cipher for wireless sensor networks,” Commun. Nonlinear Sci. Numer. Simul., vol. 22, pp. 120–133, 2015.
  • [6] Z. Liu et al., “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun., vol. 284, no. 1, pp. 123–128, 2011, doi: 10.1016/j.optcom.2010.09.013.
  • [7] Y. Zhang, “The unified image encryption algorithm based on chaos and cubic S-Box,” Inf. Sci. (Ny)., vol. 450, pp. 361–377, 2018, doi: 10.1016/j.ins.2018.03.055.
  • [8] R. U. Ginting and R. Y. Dillak, “Digital color image encryption using RC4 stream cipher and chaotic logistic map,” 2013 Int. Conf. Inf. Technol. Electr. Eng., pp. 101–105, 2013.
  • [9] A. Jolfaei and A. Mirghadri, “Image Encryption Using Chaos and Block Cipher,” Comput. Inf. Sci., vol. 4, no. 1, pp. 172–185, 2010, doi: 10.5539/cis.v4n1p172.
  • [10] M. Khan, T. Shah, and S. I. Batool, “Construction of S-box based on chaotic Boolean functions and its application in image encryption,” Neural Comput. Appl., vol. 27, no. 3, pp. 677–685, 2016, doi: 10.1007/s00521-015-1887-y.
  • [11] Y. Liu, X. Tong, and J. Ma, “Image encryption algorithm based on hyper-chaotic system and dynamic S-box,” Multimed. Tools Appl., vol. 75, no. 13, pp. 7739–7759, 2016, doi: 10.1007/s11042-015-2691-5.
  • [12] I. Cicek, A. E. Pusane, and G. Dundar, “A novel design method for discrete time chaos based true random number generators,” Integr. VLSI J., vol. 47, no. 1, pp. 38–47, 2014, doi: 10.1016/j.vlsi.2013.06.003.
  • [13] K. I. Farhana Sheikh Leonel Sousa, Ed., “Circuits and Systems for Security and Privacy” .
  • [14] A. Akgul and I. Pehlivan, “A New Three-Dimensional Chaotic System Without Equilibrium Points, Its Dynamical Analyses and Electronic Circuit Application,” Teh. Vjesn., vol. 23, pp. 209–214, 2016, doi: 10.17559/TV-20141212125942.
  • [15] N. Munir, M. Khan, T. Shah, A. S. Alanazi, and I. Hussain, “Cryptanalysis of nonlinear confusion component based encryption algorithm,” Integration, vol. 79, no. February, pp. 41–47, 2021, doi: 10.1016/j.vlsi.2021.03.004.
  • [16] H. G. Mohamed, D. H. Elkamchouchi, and K. H. Moussa, “A novel color image encryption algorithm based on hyperchaotic maps and mitochondrial DNA sequences,” Entropy, vol. 22, no. 2, pp. 7279–7297, 2020, doi: 10.3390/e22020158.

Runge Kutta Yöntemleriyle Rasgelelik Analizi

Yıl 2021, , 53 - 60, 20.10.2021
https://doi.org/10.53070/bbd.990990

Öz

Kaotik sistemler, başlangıç koşullarına ve parametrelere olan duyarlılıkları, yüksek ergodikliği, karıştırma özellikleri ve oldukça karmaşık yapıları nedeniyle şifrelemede yaygın olarak kullanılmaktadır. Bir sistemin kaotik olup olmadığını anlamak için çeşitli analizler mevcuttur. En çok kullanılan analizler zaman serisi analizi, faz portreleri, Lyapunov üsleri ve çatallanma diyagramlarıdır. Kaotik sistemlerin modellenmesi sayısal analiz yöntemleri ile de mümkündür. Bu yöntemler; Houses, Heun, 4. ve 5. derece Runge Kutta yöntemleri en yaygın diferansiyel çözüm yöntemleridir.

Destekleyen Kurum

İnönü Üniversitesi

Proje Numarası

(BAPB) FBG-2020-2143

Teşekkür

Bu çalışma, İnönü Üniversitesi Bilimsel Araştırma Projeleri Bölümü'nün (BAPB) FBG-2020-2143 sayılı projesi ile desteklenmiştir. Yazar, değerli destekleri için İnönü Üniversitesi BAPB’ye teşekkür eder.

Kaynakça

  • [1] E. M. Esin, “Knutt / Durstenfeld Shuffle Algoritmasının Resim Şifreleme Amacıyla Kullanılması,” Politek. Derg., vol. 12, no. 3, pp. 151–155, 2009, doi: 10.2339/2009.12.3.
  • [2] A. Akgül, M. Z. Yıldız, Ö. F. Boyraz, E. Güleryüz, S. Kaçar, and B. Gürevin, “Microcomputer-based encryption of vein images with a non-linear novel system,” J. Fac. Eng. Archit. Gazi Univ., vol. 35, no. 3, pp. 1369–1385, 2020, doi: 10.17341/GaziMfd.558379.
  • [3] H. Li, L. Deng, and Z. Gu, “A Robust Image Encryption Algorithm Based on a 32-bit Chaotic System,” IEEE Access, vol. 8, pp. 30127–30151, 2020, doi: 10.1109/ACCESS.2020.2972296.
  • [4] S. Chen, X. X. Zhong, and Z. Z. Wu, “Chaos block cipher for wireless sensor network,” Sci. China, Ser. F Inf. Sci., vol. 51, no. 8, pp. 1055–1063, 2008, doi: 10.1007/s11432-008-0102-5.
  • [5] X. Tong, Z. Wang, Y. Liu, M. Zhang, and L. Xu, “A novel compound chaotic block cipher for wireless sensor networks,” Commun. Nonlinear Sci. Numer. Simul., vol. 22, pp. 120–133, 2015.
  • [6] Z. Liu et al., “Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains,” Opt. Commun., vol. 284, no. 1, pp. 123–128, 2011, doi: 10.1016/j.optcom.2010.09.013.
  • [7] Y. Zhang, “The unified image encryption algorithm based on chaos and cubic S-Box,” Inf. Sci. (Ny)., vol. 450, pp. 361–377, 2018, doi: 10.1016/j.ins.2018.03.055.
  • [8] R. U. Ginting and R. Y. Dillak, “Digital color image encryption using RC4 stream cipher and chaotic logistic map,” 2013 Int. Conf. Inf. Technol. Electr. Eng., pp. 101–105, 2013.
  • [9] A. Jolfaei and A. Mirghadri, “Image Encryption Using Chaos and Block Cipher,” Comput. Inf. Sci., vol. 4, no. 1, pp. 172–185, 2010, doi: 10.5539/cis.v4n1p172.
  • [10] M. Khan, T. Shah, and S. I. Batool, “Construction of S-box based on chaotic Boolean functions and its application in image encryption,” Neural Comput. Appl., vol. 27, no. 3, pp. 677–685, 2016, doi: 10.1007/s00521-015-1887-y.
  • [11] Y. Liu, X. Tong, and J. Ma, “Image encryption algorithm based on hyper-chaotic system and dynamic S-box,” Multimed. Tools Appl., vol. 75, no. 13, pp. 7739–7759, 2016, doi: 10.1007/s11042-015-2691-5.
  • [12] I. Cicek, A. E. Pusane, and G. Dundar, “A novel design method for discrete time chaos based true random number generators,” Integr. VLSI J., vol. 47, no. 1, pp. 38–47, 2014, doi: 10.1016/j.vlsi.2013.06.003.
  • [13] K. I. Farhana Sheikh Leonel Sousa, Ed., “Circuits and Systems for Security and Privacy” .
  • [14] A. Akgul and I. Pehlivan, “A New Three-Dimensional Chaotic System Without Equilibrium Points, Its Dynamical Analyses and Electronic Circuit Application,” Teh. Vjesn., vol. 23, pp. 209–214, 2016, doi: 10.17559/TV-20141212125942.
  • [15] N. Munir, M. Khan, T. Shah, A. S. Alanazi, and I. Hussain, “Cryptanalysis of nonlinear confusion component based encryption algorithm,” Integration, vol. 79, no. February, pp. 41–47, 2021, doi: 10.1016/j.vlsi.2021.03.004.
  • [16] H. G. Mohamed, D. H. Elkamchouchi, and K. H. Moussa, “A novel color image encryption algorithm based on hyperchaotic maps and mitochondrial DNA sequences,” Entropy, vol. 22, no. 2, pp. 7279–7297, 2020, doi: 10.3390/e22020158.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Testi, Doğrulama ve Validasyon
Bölüm PAPERS
Yazarlar

Cemile İnce 0000-0002-4638-8501

Kenan İnce 0000-0003-4709-9557

Davut Hanbay 0000-0003-2271-7865

Proje Numarası (BAPB) FBG-2020-2143
Yayımlanma Tarihi 20 Ekim 2021
Gönderilme Tarihi 3 Eylül 2021
Kabul Tarihi 16 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA İnce, C., İnce, K., & Hanbay, D. (2021). Randomness Analysis With Runge Kutta Methods. Computer Science, IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium(Special), 53-60. https://doi.org/10.53070/bbd.990990

The Creative Commons Attribution 4.0 International License 88x31.png  is applied to all research papers published by JCS and

a Digital Object Identifier (DOI)     Logo_TM.png  is assigned for each published paper.