Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparision of Automatic and Interactive Segmentatition Methods

Yıl 2016, Cilt: 1 Sayı: 1, 20 - 28, 01.12.2016

Öz

This paper includes comparision of automatic and
interactive segmentation methods. Both methods
are used for color images segmentatiton and based Gaussian Mixture Model. In
automatic segmentation is segmented image pixels without any prior knowledge provided
by the user. Interactive segmentation needs prior knowledge provided by the user and segmentation
process are based prior knowledge. Obtained results demonstrate that
interactive segmentatiton is faster and more accure than automatic
segmentation.

Kaynakça

  • [1] H. Renjini and P. Bhagavathi Sivakumar, “Comparison of Automatic and Interactive Image Segmentation Methods”, International Journal of Engineering Research & Technology (IJERT), vol. 2, no. 6, pp. 3162-3170, 2013.
  • [2] C. M. Smith, et al. Automatic thresholding of three-dimensional microvascular structures from confocal microscopy images. J. Microscopy , 225(3):244–257, 2007.
  • [3] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321–331, 1987. 179.
  • [4] V. Grau, A. U. J. Mewes, M. Alcaniz, R. Kikinis, and S. K. Warfield. Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med.Imag., 23(4):447–458, 2004.
  • [5] A. Pitiot, A.W. Toga, N. Ayache, and P. Thompson. Texture based MRI segmentation with a two-stage hybrid neural classifier. In Proc.World Congress Computational Intelligence/INNSIEEE Int. Joint Conf. Neural Networks, pages 2053–2058, 2002.
  • [6] Alasu Serdar, and Muhammed Fatih Talu. "Interactive segmentatition implementation." 2015 23nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2015.
  • [7] Boykov Y, JollyM(2001) Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: Proceeding of 8th IEEE international conference on computer vision, ICCV 2001, IEEE, vol 1, pp 105–112
  • [8] Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Models Image Process 60(5):349–384
  • [9] Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783
  • [10] Bai, X., Sapiro, G, “A geodesic framework for fast interactive image and video segmentation and matting.” In: Proceedings of International Conference on Computer Vision (ICCV), pp. 1–8 (2007)
  • [11] Photoshop / Renk modları, https://helpx.adobe.com/tr/photoshop /using/color-modes.html.
  • [12] Ortalama normalizasyonu, https://en.wikipedia.org/wiki/ Normalization_(statistics)

Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması

Yıl 2016, Cilt: 1 Sayı: 1, 20 - 28, 01.12.2016

Öz

Bu makale, otomatik ve interaktif bölütleme yöntemlerinin
karşılaştırılmasını içermektedir. Her iki yöntem
renkli görüntülerin bölütlenmesi için kullanılmakta ve Gauss Karışım Modelini (Gaussian
Mixture Model) temel almaktadır. Otomatik
bölütlemede, kullanıcıdan her hangi bir önsel bilgi istenmeden görüntü
pikselleri bölütlenir. İnteraktif 
bölütlemede ise kullanıcı tarafından sağlanan önsel bilgiye ihtiyaç
vardır ve bölütleme işlemi bu önsel bilgiye göre yapılmaktadır. Elde edilen
sonuçlar interaktif bölütlemenin, otomatik bölütlemeden daha hızlı ve doğru
olduğunu ortaya koymaktadır.

Kaynakça

  • [1] H. Renjini and P. Bhagavathi Sivakumar, “Comparison of Automatic and Interactive Image Segmentation Methods”, International Journal of Engineering Research & Technology (IJERT), vol. 2, no. 6, pp. 3162-3170, 2013.
  • [2] C. M. Smith, et al. Automatic thresholding of three-dimensional microvascular structures from confocal microscopy images. J. Microscopy , 225(3):244–257, 2007.
  • [3] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321–331, 1987. 179.
  • [4] V. Grau, A. U. J. Mewes, M. Alcaniz, R. Kikinis, and S. K. Warfield. Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med.Imag., 23(4):447–458, 2004.
  • [5] A. Pitiot, A.W. Toga, N. Ayache, and P. Thompson. Texture based MRI segmentation with a two-stage hybrid neural classifier. In Proc.World Congress Computational Intelligence/INNSIEEE Int. Joint Conf. Neural Networks, pages 2053–2058, 2002.
  • [6] Alasu Serdar, and Muhammed Fatih Talu. "Interactive segmentatition implementation." 2015 23nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2015.
  • [7] Boykov Y, JollyM(2001) Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: Proceeding of 8th IEEE international conference on computer vision, ICCV 2001, IEEE, vol 1, pp 105–112
  • [8] Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Models Image Process 60(5):349–384
  • [9] Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783
  • [10] Bai, X., Sapiro, G, “A geodesic framework for fast interactive image and video segmentation and matting.” In: Proceedings of International Conference on Computer Vision (ICCV), pp. 1–8 (2007)
  • [11] Photoshop / Renk modları, https://helpx.adobe.com/tr/photoshop /using/color-modes.html.
  • [12] Ortalama normalizasyonu, https://en.wikipedia.org/wiki/ Normalization_(statistics)
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Bölüm PAPERS
Yazarlar

Serdar Alasu Bu kişi benim

Muhammed Fatih Talu

Yayımlanma Tarihi 1 Aralık 2016
Gönderilme Tarihi 19 Nisan 2017
Kabul Tarihi 24 Kasım 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 1 Sayı: 1

Kaynak Göster

APA Alasu, S., & Talu, M. F. (2016). Comparision of Automatic and Interactive Segmentatition Methods. Computer Science, 1(1), 20-28.

The Creative Commons Attribution 4.0 International License 88x31.png  is applied to all research papers published by JCS and

a Digital Object Identifier (DOI)     Logo_TM.png  is assigned for each published paper.