Yapay Sinir Ağları (YSA) makine öğrenmesi gibi birçok uygulama alanında yaygın şekilde kullanılan bir yöntemdir. YSA’da ağın eğitilmesi için ağırlık değerlerinin güncellenmesi ve optimize edilmesi gerekmektedir. Ağırlık değerlerinin optimizasyonunda ağın başarımı yani öğrenme başarısı kullanılan eğitim yöntemi ve öğrenme sürecine bağlıdır. Bu çalışmanın amacı biyolojik sinir ağlarının çalışma şeklinden yola çıkılarak oluşturulan YSA’ların farklı teknikler ile nasıl optimize edildiğini araştırmaktır. Bununla ilgili olarak çeşitli çalışmalar incelenmiştir. Elde edilen sonuçlar, YSA’ların metasezgisel, karma ve özel yöntemlerle optimize edilebildiğini göstermiştir. Bu alanda disiplinler arası çalışmaların da yapıldığı görülmüştür. Bu çalışma kapsamında sinir ağlarını optimize etmek için kullanılan yöntemlerden birisi olan istatistiksel veya deneysel yöntemler uygulanmıştır. Bunun için sinir ağı parametrelerinden batch boyutu, devir sayısı, öğrenme oranı, momentum, ağırlık başlatma, nöron aktivasyon fonksiyonu, gizli katmandaki nöron sayısı kullanılarak 5 farklı deney yapılmıştır. Yapılan deneylerin sonuçlarında sinir ağı başarımının arttığı görülmüştür.
Birincil Dil | Türkçe |
---|---|
Konular | Bilgisayar Yazılımı |
Bölüm | PAPERS |
Yazarlar | |
Yayımlanma Tarihi | 1 Aralık 2020 |
Gönderilme Tarihi | 12 Mayıs 2020 |
Kabul Tarihi | 7 Kasım 2020 |
Yayımlandığı Sayı | Yıl 2020 Cilt: 5 Sayı: 2 |
The Creative Commons Attribution 4.0 International License is applied to all research papers published by JCS and
a Digital Object Identifier (DOI) is assigned for each published paper.