Araştırma Makalesi
BibTex RIS Kaynak Göster

Algoritmik Şeffaflık, Hesap Verebilirlik ve Veri Gizliliğinin Birleşimini Analiz Etmek: Yapay Zeka Sistemlerinde Güven Dinamikleri Üzerine Kapsamlı Bir Çalışma

Yıl 2025, Cilt: 13 Sayı: 2, 440 - 469, 17.12.2025
https://doi.org/10.14514/beykozad.1746992

Öz

Yapay Zeka (YZ) sistemlerinin günlük hayatta giderek yaygınlaşması, toplumsal güven konusunu teknolojik ve etik tartışmalarda ön plana çıkarmaktadır. Bu çalışma, Algoritmik Şeffaflık (AŞ), Hesap Verebilirlik Mekanizmaları (HVM) ve Veri Gizliliği Politikalarının (VGP) Yapay Zeka Sistemlerine Güveni (YSG) nasıl etkilediğini incelemeyi amaçlamaktadır. Bu amaçla, Sosyal Bilişsel Teori'ye dayanarak, AŞ, HVM ve VGP'nin YSG ile pozitif korelasyon göstereceği ve VGP'nin AŞ ile YSG arasında moderatör görevi göreceği öngörülmüştür. Bulgular, 398 katılımcıdan oluşan bir veri kümesi üzerinde Yapısal Eşitlik Modellemesi (YEM) kullanarak dört hipotezin tümünü önemli ölçüde desteklemiştir. Özellikle, VGP'nin AŞ ve YSG arasındaki ilişkiyi ılımlı hale getirdiği tespit edilmiş ve toplumsal güveni şekillendirmede kritik bir bileşen olarak rol oynadığı vurgulanmıştır. Bu çalışma, çeşitli araştırma boşluklarını kapatarak mevcut literatürü zenginleştirmekle kalmayıp, aynı zamanda YZ sistemlerinde kamu ve toplumsal güveni artırmayı amaçlayan politika yapıcılar, uygulayıcılar için de somut öneriler sunmaktadır.

Kaynakça

  • Abdurohman, N. R. (2025). Artificial intelligence in higher education: Opportunities and challenges. Eurasian Science Review An International Peer-Reviewed Multidisciplinary Journal, 2(Special Issue), 1683–1695. https://doi.org/10.63034/esr-334
  • Adadi, A. & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
  • AGS Global. (2023). Dijital dönüşümün iş süreçlerine etkileri. MÜSİAD. https://www.musiad.org.tr/uploads/yayinlar/arastirma-raporlari/pdf/ags-global_musiad-dijital-donusumun-is-sureclerine-etkileri.pdf
  • AlDhaen, F. (2022). The use of artificial intelligence in higher education – systematic review. In COVID-19 Challenges to University Information Technology Governance (pp. 269–285). Springer International Publishing. https://doi.org/10.1007/978-3-031-13351-0_13
  • Ali, S., Akhlaq, F., Imran, A. S., Kastrati, Z., Daudpota, S. M. & Moosa, M. (2023). The enlightening role of explainable artificial intelligence in medical & healthcare domains: A systematic literature review. Computers in Biology and Medicine, 166, 107555. https://doi.org/10.1016/j.compbiomed.2023.107555
  • Alomary, A., & Woollard, J. (2015). How is technology accepted by users? A review of technology acceptance models and theories. 5th International Conference on 4E, 1–4.
  • Altuntaş, H., & Karabay, E. (2024). Üniversite öğrencileri ve öğretim üyelerinin yapay zekâya ilişkin metaforik algıları. Yönetim Bilişim Sistemleri Dergisi, 10(2), 35–52.
  • Asıl, S. (2025). Yapay zekâ etiği: Temel ilkeler, sorunlar ve disiplinlerarası yaklaşımlar. İNİF E- Dergi, 10(1), 152–175.
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall.
  • Bryman, A. (2016). Social research methods (5th ed.). Oxford University Press.
  • Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., & Allas, T. (2017). Artificial intelligence: The next digital frontier?McKinsey Global Institute. https://www.mckinsey.com/~/media/McKinsey/Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-Artificial-Intelligence-Discussion-paper.ashx
  • Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1). https://doi.org/10.1177/2053951715622512
  • Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Sage.
  • Digital Education Council. (2025). Digital Education Council global AI faculty survey 2025. https://www.digitaleducationcouncil.com/post/digital-education-council-global-ai-faculty-survey
  • Doruköz, K. D., & Uslu, B. (2023). Yapay zekânın iş hayatındaki yeri: Avantajlar, dezavantajlar ve politikalar. Bandırma Onyedi Eylül Üniversitesi Sosyal Bilimler Araştırmaları Dergisi, 6(CEEİK 2023 Özel Sayısı), 45–62. https://doi.org/10.38120/banusad.1376452
  • Edelman. (2022). 2022 Edelman trust barometer: Global report. https://www.edelman.com/sites/g/files/aatuss191/files/2022-01/2022%20Edelman%20Trust%20Barometer%20Global%20Report_Final.pdf
  • Evans, J. R., & Mathur, A. (2018). The value of online surveys: A look back and a look ahead. Internet Research, 28(4), 854–887. https://doi.org/10.1108/IntR-03-2018-0089
  • EY Türkiye. (2025, May 29). Yapay zekâ duyarlılık endeksi sonuçları. Fintech Istanbul. https://fintechistanbul.org/2025/05/30/ey-yapay-zeka-duyarlilik-endeksi-sonuclari-aciklandi/
  • Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). Sage Publications.
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Gerli, P., Clement, J., Esposito, G., Mora, L. & Crutzen, N. (2022). The hidden power of emotions: How psychological factors influence skill development in smart technology adoption. Technological Forecasting and Social Change, 180, 121721. https://doi.org/10.1016/j.techfore.2022.121721
  • Grimmelikhuijsen, S. & Meijer, A. (2022). Legitimacy of algorithmic decision-making: Six threats and the need for a calibrated institutional response. Perspectives on Public Management and Governance, 5(3), 232–242. https://doi.org/10.1093/ppmgov/gvac008
  • Guastella, A., & Seçkin, E. (2025). GenAI: Ready or not? Perspectives on talent, leadership, and cultural transformation. TÜSİAD. https://tusiad.org/tr/yayinlar/raporlar/item/11816-genai-ready-or-not-perspectives-on-talent-leadership-and-cultural-transformation
  • Gustilo, L., Ong, E. & Lapinid, M. R. (2024). Algorithmically-driven writing and academic integrity: Exploring educators’ practices, perceptions, and policies in AI era. International Journal for Educational Integrity, 20(1), 3. https://doi.org/10.1007/s40979-024-00153-8
  • Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Sage.
  • Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021b). Partial least squares structural equation modeling (PLS-SEM) using R. Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7
  • Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
  • Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about PLS. Organizational Research Methods, 17(2), 182–209. https://doi.org/10.1177/1094428114526928
  • Herdiani, A., Mahayana, D., & Rosmansyah, Y. (2024). Building trust in an artificial intelligence-based educational support system: A narrative review. Jurnal Sosioteknologi, 23(1), 101–119. https://doi.org/10.5614/sostek.itbj.2024.23.1.6
  • Hosain, M. T., Anik, M. H., Rafi, S., Tabassum, R., Insia, K., & Siddiky, M. M. (2023). Path to gain functional transparency in artificial intelligence with meaningful explainability. Journal of Metaverse, 3(2), 166–180. https://doi.org/10.57019/jmv.1306685
  • Kim, T. W., & Routledge, B. R. (2022). Why a right to an explanation of algorithmic decision-making should exist: A trust-based approach. Business Ethics Quarterly, 32(1), 75–102. https://doi.org/10.1017/beq.2021.3
  • Knowles, B., & Richards, J. T. (2021). The sanction of authority. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 262–271. https://doi.org/10.1145/3442188.3445890
  • Kock, F., Berbekova, A., & Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86, 104330. https://doi.org/10.1016/j.tourman.2021.104330
  • Kruse, L., Wunderlich, N., & Beck, R. (2019). Artificial intelligence for the financial services industry: What challenges organizations to succeed? Proceedings of the Annual Hawaii International Conference on System Sciences, 6408–6417. http://hdl.handle.net/10125/60075
  • Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Ed.), Contributions to probability and statistics: Essays in honor of Harold Hotelling (pp. 278–292). Stanford University Press.
  • Malik, A., & Budhwar, P. (2023). Artificial intelligence and international HRM. Routledge. https://doi.org/10.4324/9781003377085
  • Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734. https://doi.org/10.5465/amr.1995.9508080335
  • McLeod, A., & Dolezel, D. (2022). Information security policy non-compliance: Can capitulation theory explain user behaviors? Computers & Security, 112, 102526. https://doi.org/10.1016/j.cose.2021.102526
  • Meylani, R. (2024). Artificial intelligence in the education of teachers: A qualitative synthesis of the cutting-edge research literature. Journal of Computer and Education Research, 12(24), 600–637. https://doi.org/10.18009/jcer.1477709
  • Michael, K., Kobran, S., Abbas, R., & Hamdoun, S. (2019). Privacy, data rights and cybersecurity: Technology for good in the achievement of sustainable development goals. 2019 IEEE International Symposium on Technology and Society (ISTAS), 1–13. https://doi.org/10.1109/ISTAS48451.2019.8937956
  • Mikalef, P., & Pateli, A. (2017). Information technology-enabled dynamic capabilities and their indirect effect on competitive performance: Findings from PLS-SEM and fsQCA. Journal of Business Research, 70, 1–16. https://doi.org/10.1016/j.jbusres.2016.09.004
  • Ministry of National Education (MEB). (2025). Artificial Intelligence and Big Data Applications Department. Retrieved May 15, 2025, from https://yegitek.meb.gov.tr/www/yapay-zek-ve-buyuk-veri-uygulamalari-daire-baskanligi/icerik/3783
  • Novelli, C., Taddeo, M., & Floridi, L. (2024). Accountability in artificial intelligence: What it is and how it works. AI & Society, 39(4), 1871–1882. https://doi.org/10.1007/s00146-023-01635-y
  • Omrani, N., Rivieccio, G., Fiore, U., Schiavone, F., & Agreda, S. G. (2022). To trust or not to trust? An assessment of trust in AI-based systems: Concerns, ethics and contexts. Technological Forecasting and Social Change, 181, 121763. https://doi.org/10.1016/j.techfore.2022.121763
  • Personal Data Protection Authority. (2025). Yapay zeka ve kişisel verilerin korunması rehberi. https://www.kvkk.gov.tr/Icerik/7048/Yapay-Zeka-Alaninda-Kisisel-Verilerin-Korunmasina-Dair-Tavsiyeler
  • Pleyers, G., & Poncin, I. (2020). Non-immersive virtual reality technologies in real estate: How customer experience drives attitudes toward properties and the service provider. Journal of Retailing and Consumer Services, 57, 102175. https://doi.org/10.1016/j.jretconser.2020.102175
  • Radanliev, P. (2025). AI ethics: Integrating transparency, fairness, and privacy in AI development. Applied Artificial Intelligence, 39(1). https://doi.org/10.1080/08839514.2025.2463722
  • Ramayah, T., Cheah, J.-H., Chuah, F., Ting, H., & Memon, M. A. (2017). Assessment of moderation analysis. In Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0 (Ch. 13). Pearson.
  • Republic of Türkiye Ministry of Industry and Technology. (2021). National artificial intelligence strategy of Turkey 2021–2025. https://www.turkiye.ai/ulusal-yapay-zeka-stratejisi-2021-2025.pdf
  • Ringle, C. M., Wende, S., & Becker, J.-M. (2015). SmartPLS 3. SmartPLS GmbH. http://www.smartpls.com
  • Robinson, S. C. (2020). Trust, transparency, and openness: How inclusion of cultural values shapes Nordic national public policy strategies for artificial intelligence (AI). Technology in Society, 63, 101421. https://doi.org/10.1016/j.techsoc.2020.101421
  • Sarstedt, M., Hair, J. F., Cheah, J.-H., Becker, J.-M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003
  • Sarstedt, M., Ringle, C. M., Cheah, J.-H., Ting, H., Moisescu, O. I., & Radomir, L. (2020). Structural model robustness checks in PLS-SEM. Tourism Economics, 26(4), 531–554. https://doi.org/10.1177/1354816618823921
  • Savaş, S. (2021). Artificial intelligence and innovative applications in education: The case of Turkey. Journal of Information Systems and Management Research, 3(1), 14–26.
  • Schmidt, P., Biessmann, F., & Teubner, T. (2020). Transparency and trust in artificial intelligence systems. Journal of Decision Systems, 29(4), 260–278. https://doi.org/10.1080/12460125.2020.1819094
  • Sharma, M., Luthra, S., Joshi, S., & Kumar, A. (2022). Implementing challenges of artificial intelligence: Evidence from public manufacturing sector of an emerging economy. Government Information Quarterly, 39(4), 101624. https://doi.org/10.1016/j.giq.2021.101624
  • Shin, D. (2020). User perceptions of algorithmic decisions in the personalized AI system: Perceptual evaluation of fairness, accountability, transparency, and explainability. Journal of Broadcasting & Electronic Media, 64(4), 541–565. https://doi.org/10.1080/08838151.2020.1843357
  • Slimi, Z., & Carballido, B. V. (2023). Navigating the ethical challenges of artificial intelligence in higher education: An analysis of seven global AI ethics policies. TEM Journal, 12(2). https://doi.org/10.18421/TEM122-02U
  • Thiebes, S., Lins, S., & Sunyaev, A. (2021). Trustworthy artificial intelligence. Electronic Markets, 31(2), 447–464. https://doi.org/10.1007/s12525-020-00441-4
  • Trust, T., Whalen, J., & Mouza, C. (2023). Editorial: ChatGPT: Challenges, opportunities, and implications for teacher education. Contemporary Issues in Technology and Teacher Education, 23(1), 1–23. https://www.learntechlib.org/primary/p/222408/
  • Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2022). The ethics of algorithms: Key problems and solutions. AI & Society, 37(1), 215–230. https://doi.org/10.1007/s00146-021-01154-8
  • Turkish Informatics Association. (2023). 3. Kişisel verileri koruma zirvesi sonuç raporu. https://www.tbd.org.tr/pdf/raporlar/3-kvkk-zirvesi-sonuc-raporu.pdf
  • Vakifli, I. (2025). Bütüncül çerçevede yapay zeka: Dünyadan ve Türkiye'den örnekler. İş'te Davranış Dergisi, 10(1), 1–29. https://doi.org/10.25203/idd.1688911
  • Wahyuni, F., Wiyono, B. B., Atmoko, A., & Hambali, İ. (2019). Assessing relationships between emotional intelligence, school climate and school counselors burnout: A structural equation model. Journal for the Education of Gifted Young Scientists, 7(4), 1361–1374. https://doi.org/10.17478/jegys.639397
  • Wright, K. B. (2005). Researching internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. Journal of Computer-Mediated Communication, 10(3), JCMC1034. https://doi.org/10.1111/j.1083-6101.2005.tb00259.x
  • Yang, E., & Beil, C. (2024). Ensuring data privacy in AI/ML implementation. New Directions for Higher Education, 2024(207), 63–78. https://doi.org/10.1002/he.20509
  • Yeşilyurt, S., Dündar, R., & Demir, R. Z. (2024). Türkiye’de yapay zekâ ve eğitim ilişkisini inceleyen lisansüstü tezlerin analizi: Bir meta sentez çalışması. Journal of Innovative Research in Social Studies, 7(1), 47–73. https://doi.org/10.47503/jirss.1484848
  • YÖK. (2025). YÖK veri yönetim sistemi. Retrieved April 11, 2025, from https://veriyonetim.yok.gov.tr/
  • Zickar, M. J., & Keith, M. G. (2023). Innovations in sampling: Improving the appropriateness and quality of samples in organizational research. Annual Review of Organizational Psychology and Organizational Behavior, 10(1), 315–337. https://doi.org/10.1146/annurev-orgpsych-120920-052946

Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems

Yıl 2025, Cilt: 13 Sayı: 2, 440 - 469, 17.12.2025
https://doi.org/10.14514/beykozad.1746992

Öz

The increasing ubiquity of Artificial Intelligence (AI) systems in daily life brings the issue of public trust to the forefront of technological and ethical discussions. This study aims to examine how Algorithmic Transparency (AT), Accountability Mechanisms (AM), and Data Privacy Policies (DPP) influence Trust in AI Systems (TAS). Drawing on Social Cognitive Theory, we hypothesized that AT, AM, and DPP would positively correlate with TAS, with DPP acting as a moderator between AT and TAS. Using Structural Equation Modeling (SEM) on a dataset of 398 respondents, our findings significantly supported all four hypotheses. Notably, DPP was found to moderate the relationship between AT and TAS, emphasizing its role as a critical component in shaping public trust. This study not only enriches the existing body of literature by bridging several research gaps but also provides concrete recommendations for policymakers and practitioners aiming to enhance public trust in AI systems.

Kaynakça

  • Abdurohman, N. R. (2025). Artificial intelligence in higher education: Opportunities and challenges. Eurasian Science Review An International Peer-Reviewed Multidisciplinary Journal, 2(Special Issue), 1683–1695. https://doi.org/10.63034/esr-334
  • Adadi, A. & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
  • AGS Global. (2023). Dijital dönüşümün iş süreçlerine etkileri. MÜSİAD. https://www.musiad.org.tr/uploads/yayinlar/arastirma-raporlari/pdf/ags-global_musiad-dijital-donusumun-is-sureclerine-etkileri.pdf
  • AlDhaen, F. (2022). The use of artificial intelligence in higher education – systematic review. In COVID-19 Challenges to University Information Technology Governance (pp. 269–285). Springer International Publishing. https://doi.org/10.1007/978-3-031-13351-0_13
  • Ali, S., Akhlaq, F., Imran, A. S., Kastrati, Z., Daudpota, S. M. & Moosa, M. (2023). The enlightening role of explainable artificial intelligence in medical & healthcare domains: A systematic literature review. Computers in Biology and Medicine, 166, 107555. https://doi.org/10.1016/j.compbiomed.2023.107555
  • Alomary, A., & Woollard, J. (2015). How is technology accepted by users? A review of technology acceptance models and theories. 5th International Conference on 4E, 1–4.
  • Altuntaş, H., & Karabay, E. (2024). Üniversite öğrencileri ve öğretim üyelerinin yapay zekâya ilişkin metaforik algıları. Yönetim Bilişim Sistemleri Dergisi, 10(2), 35–52.
  • Asıl, S. (2025). Yapay zekâ etiği: Temel ilkeler, sorunlar ve disiplinlerarası yaklaşımlar. İNİF E- Dergi, 10(1), 152–175.
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall.
  • Bryman, A. (2016). Social research methods (5th ed.). Oxford University Press.
  • Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., & Allas, T. (2017). Artificial intelligence: The next digital frontier?McKinsey Global Institute. https://www.mckinsey.com/~/media/McKinsey/Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-Artificial-Intelligence-Discussion-paper.ashx
  • Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1). https://doi.org/10.1177/2053951715622512
  • Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Sage.
  • Digital Education Council. (2025). Digital Education Council global AI faculty survey 2025. https://www.digitaleducationcouncil.com/post/digital-education-council-global-ai-faculty-survey
  • Doruköz, K. D., & Uslu, B. (2023). Yapay zekânın iş hayatındaki yeri: Avantajlar, dezavantajlar ve politikalar. Bandırma Onyedi Eylül Üniversitesi Sosyal Bilimler Araştırmaları Dergisi, 6(CEEİK 2023 Özel Sayısı), 45–62. https://doi.org/10.38120/banusad.1376452
  • Edelman. (2022). 2022 Edelman trust barometer: Global report. https://www.edelman.com/sites/g/files/aatuss191/files/2022-01/2022%20Edelman%20Trust%20Barometer%20Global%20Report_Final.pdf
  • Evans, J. R., & Mathur, A. (2018). The value of online surveys: A look back and a look ahead. Internet Research, 28(4), 854–887. https://doi.org/10.1108/IntR-03-2018-0089
  • EY Türkiye. (2025, May 29). Yapay zekâ duyarlılık endeksi sonuçları. Fintech Istanbul. https://fintechistanbul.org/2025/05/30/ey-yapay-zeka-duyarlilik-endeksi-sonuclari-aciklandi/
  • Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). Sage Publications.
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Gerli, P., Clement, J., Esposito, G., Mora, L. & Crutzen, N. (2022). The hidden power of emotions: How psychological factors influence skill development in smart technology adoption. Technological Forecasting and Social Change, 180, 121721. https://doi.org/10.1016/j.techfore.2022.121721
  • Grimmelikhuijsen, S. & Meijer, A. (2022). Legitimacy of algorithmic decision-making: Six threats and the need for a calibrated institutional response. Perspectives on Public Management and Governance, 5(3), 232–242. https://doi.org/10.1093/ppmgov/gvac008
  • Guastella, A., & Seçkin, E. (2025). GenAI: Ready or not? Perspectives on talent, leadership, and cultural transformation. TÜSİAD. https://tusiad.org/tr/yayinlar/raporlar/item/11816-genai-ready-or-not-perspectives-on-talent-leadership-and-cultural-transformation
  • Gustilo, L., Ong, E. & Lapinid, M. R. (2024). Algorithmically-driven writing and academic integrity: Exploring educators’ practices, perceptions, and policies in AI era. International Journal for Educational Integrity, 20(1), 3. https://doi.org/10.1007/s40979-024-00153-8
  • Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Sage.
  • Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021b). Partial least squares structural equation modeling (PLS-SEM) using R. Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7
  • Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
  • Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about PLS. Organizational Research Methods, 17(2), 182–209. https://doi.org/10.1177/1094428114526928
  • Herdiani, A., Mahayana, D., & Rosmansyah, Y. (2024). Building trust in an artificial intelligence-based educational support system: A narrative review. Jurnal Sosioteknologi, 23(1), 101–119. https://doi.org/10.5614/sostek.itbj.2024.23.1.6
  • Hosain, M. T., Anik, M. H., Rafi, S., Tabassum, R., Insia, K., & Siddiky, M. M. (2023). Path to gain functional transparency in artificial intelligence with meaningful explainability. Journal of Metaverse, 3(2), 166–180. https://doi.org/10.57019/jmv.1306685
  • Kim, T. W., & Routledge, B. R. (2022). Why a right to an explanation of algorithmic decision-making should exist: A trust-based approach. Business Ethics Quarterly, 32(1), 75–102. https://doi.org/10.1017/beq.2021.3
  • Knowles, B., & Richards, J. T. (2021). The sanction of authority. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 262–271. https://doi.org/10.1145/3442188.3445890
  • Kock, F., Berbekova, A., & Assaf, A. G. (2021). Understanding and managing the threat of common method bias: Detection, prevention and control. Tourism Management, 86, 104330. https://doi.org/10.1016/j.tourman.2021.104330
  • Kruse, L., Wunderlich, N., & Beck, R. (2019). Artificial intelligence for the financial services industry: What challenges organizations to succeed? Proceedings of the Annual Hawaii International Conference on System Sciences, 6408–6417. http://hdl.handle.net/10125/60075
  • Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Ed.), Contributions to probability and statistics: Essays in honor of Harold Hotelling (pp. 278–292). Stanford University Press.
  • Malik, A., & Budhwar, P. (2023). Artificial intelligence and international HRM. Routledge. https://doi.org/10.4324/9781003377085
  • Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734. https://doi.org/10.5465/amr.1995.9508080335
  • McLeod, A., & Dolezel, D. (2022). Information security policy non-compliance: Can capitulation theory explain user behaviors? Computers & Security, 112, 102526. https://doi.org/10.1016/j.cose.2021.102526
  • Meylani, R. (2024). Artificial intelligence in the education of teachers: A qualitative synthesis of the cutting-edge research literature. Journal of Computer and Education Research, 12(24), 600–637. https://doi.org/10.18009/jcer.1477709
  • Michael, K., Kobran, S., Abbas, R., & Hamdoun, S. (2019). Privacy, data rights and cybersecurity: Technology for good in the achievement of sustainable development goals. 2019 IEEE International Symposium on Technology and Society (ISTAS), 1–13. https://doi.org/10.1109/ISTAS48451.2019.8937956
  • Mikalef, P., & Pateli, A. (2017). Information technology-enabled dynamic capabilities and their indirect effect on competitive performance: Findings from PLS-SEM and fsQCA. Journal of Business Research, 70, 1–16. https://doi.org/10.1016/j.jbusres.2016.09.004
  • Ministry of National Education (MEB). (2025). Artificial Intelligence and Big Data Applications Department. Retrieved May 15, 2025, from https://yegitek.meb.gov.tr/www/yapay-zek-ve-buyuk-veri-uygulamalari-daire-baskanligi/icerik/3783
  • Novelli, C., Taddeo, M., & Floridi, L. (2024). Accountability in artificial intelligence: What it is and how it works. AI & Society, 39(4), 1871–1882. https://doi.org/10.1007/s00146-023-01635-y
  • Omrani, N., Rivieccio, G., Fiore, U., Schiavone, F., & Agreda, S. G. (2022). To trust or not to trust? An assessment of trust in AI-based systems: Concerns, ethics and contexts. Technological Forecasting and Social Change, 181, 121763. https://doi.org/10.1016/j.techfore.2022.121763
  • Personal Data Protection Authority. (2025). Yapay zeka ve kişisel verilerin korunması rehberi. https://www.kvkk.gov.tr/Icerik/7048/Yapay-Zeka-Alaninda-Kisisel-Verilerin-Korunmasina-Dair-Tavsiyeler
  • Pleyers, G., & Poncin, I. (2020). Non-immersive virtual reality technologies in real estate: How customer experience drives attitudes toward properties and the service provider. Journal of Retailing and Consumer Services, 57, 102175. https://doi.org/10.1016/j.jretconser.2020.102175
  • Radanliev, P. (2025). AI ethics: Integrating transparency, fairness, and privacy in AI development. Applied Artificial Intelligence, 39(1). https://doi.org/10.1080/08839514.2025.2463722
  • Ramayah, T., Cheah, J.-H., Chuah, F., Ting, H., & Memon, M. A. (2017). Assessment of moderation analysis. In Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0 (Ch. 13). Pearson.
  • Republic of Türkiye Ministry of Industry and Technology. (2021). National artificial intelligence strategy of Turkey 2021–2025. https://www.turkiye.ai/ulusal-yapay-zeka-stratejisi-2021-2025.pdf
  • Ringle, C. M., Wende, S., & Becker, J.-M. (2015). SmartPLS 3. SmartPLS GmbH. http://www.smartpls.com
  • Robinson, S. C. (2020). Trust, transparency, and openness: How inclusion of cultural values shapes Nordic national public policy strategies for artificial intelligence (AI). Technology in Society, 63, 101421. https://doi.org/10.1016/j.techsoc.2020.101421
  • Sarstedt, M., Hair, J. F., Cheah, J.-H., Becker, J.-M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003
  • Sarstedt, M., Ringle, C. M., Cheah, J.-H., Ting, H., Moisescu, O. I., & Radomir, L. (2020). Structural model robustness checks in PLS-SEM. Tourism Economics, 26(4), 531–554. https://doi.org/10.1177/1354816618823921
  • Savaş, S. (2021). Artificial intelligence and innovative applications in education: The case of Turkey. Journal of Information Systems and Management Research, 3(1), 14–26.
  • Schmidt, P., Biessmann, F., & Teubner, T. (2020). Transparency and trust in artificial intelligence systems. Journal of Decision Systems, 29(4), 260–278. https://doi.org/10.1080/12460125.2020.1819094
  • Sharma, M., Luthra, S., Joshi, S., & Kumar, A. (2022). Implementing challenges of artificial intelligence: Evidence from public manufacturing sector of an emerging economy. Government Information Quarterly, 39(4), 101624. https://doi.org/10.1016/j.giq.2021.101624
  • Shin, D. (2020). User perceptions of algorithmic decisions in the personalized AI system: Perceptual evaluation of fairness, accountability, transparency, and explainability. Journal of Broadcasting & Electronic Media, 64(4), 541–565. https://doi.org/10.1080/08838151.2020.1843357
  • Slimi, Z., & Carballido, B. V. (2023). Navigating the ethical challenges of artificial intelligence in higher education: An analysis of seven global AI ethics policies. TEM Journal, 12(2). https://doi.org/10.18421/TEM122-02U
  • Thiebes, S., Lins, S., & Sunyaev, A. (2021). Trustworthy artificial intelligence. Electronic Markets, 31(2), 447–464. https://doi.org/10.1007/s12525-020-00441-4
  • Trust, T., Whalen, J., & Mouza, C. (2023). Editorial: ChatGPT: Challenges, opportunities, and implications for teacher education. Contemporary Issues in Technology and Teacher Education, 23(1), 1–23. https://www.learntechlib.org/primary/p/222408/
  • Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2022). The ethics of algorithms: Key problems and solutions. AI & Society, 37(1), 215–230. https://doi.org/10.1007/s00146-021-01154-8
  • Turkish Informatics Association. (2023). 3. Kişisel verileri koruma zirvesi sonuç raporu. https://www.tbd.org.tr/pdf/raporlar/3-kvkk-zirvesi-sonuc-raporu.pdf
  • Vakifli, I. (2025). Bütüncül çerçevede yapay zeka: Dünyadan ve Türkiye'den örnekler. İş'te Davranış Dergisi, 10(1), 1–29. https://doi.org/10.25203/idd.1688911
  • Wahyuni, F., Wiyono, B. B., Atmoko, A., & Hambali, İ. (2019). Assessing relationships between emotional intelligence, school climate and school counselors burnout: A structural equation model. Journal for the Education of Gifted Young Scientists, 7(4), 1361–1374. https://doi.org/10.17478/jegys.639397
  • Wright, K. B. (2005). Researching internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. Journal of Computer-Mediated Communication, 10(3), JCMC1034. https://doi.org/10.1111/j.1083-6101.2005.tb00259.x
  • Yang, E., & Beil, C. (2024). Ensuring data privacy in AI/ML implementation. New Directions for Higher Education, 2024(207), 63–78. https://doi.org/10.1002/he.20509
  • Yeşilyurt, S., Dündar, R., & Demir, R. Z. (2024). Türkiye’de yapay zekâ ve eğitim ilişkisini inceleyen lisansüstü tezlerin analizi: Bir meta sentez çalışması. Journal of Innovative Research in Social Studies, 7(1), 47–73. https://doi.org/10.47503/jirss.1484848
  • YÖK. (2025). YÖK veri yönetim sistemi. Retrieved April 11, 2025, from https://veriyonetim.yok.gov.tr/
  • Zickar, M. J., & Keith, M. G. (2023). Innovations in sampling: Improving the appropriateness and quality of samples in organizational research. Annual Review of Organizational Psychology and Organizational Behavior, 10(1), 315–337. https://doi.org/10.1146/annurev-orgpsych-120920-052946
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Memnuniyet ve Optimizasyon, Planlama ve Karar Verme, Yapay Zeka (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Erdal Büyükbıçakcı 0000-0001-7276-741X

Gönderilme Tarihi 20 Temmuz 2025
Kabul Tarihi 3 Aralık 2025
Yayımlanma Tarihi 17 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Büyükbıçakcı, E. (2025). Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems. Beykoz Akademi Dergisi, 13(2), 440-469. https://doi.org/10.14514/beykozad.1746992
AMA Büyükbıçakcı E. Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems. Beykoz Akademi Dergisi. Aralık 2025;13(2):440-469. doi:10.14514/beykozad.1746992
Chicago Büyükbıçakcı, Erdal. “Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems”. Beykoz Akademi Dergisi 13, sy. 2 (Aralık 2025): 440-69. https://doi.org/10.14514/beykozad.1746992.
EndNote Büyükbıçakcı E (01 Aralık 2025) Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems. Beykoz Akademi Dergisi 13 2 440–469.
IEEE E. Büyükbıçakcı, “Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems”, Beykoz Akademi Dergisi, c. 13, sy. 2, ss. 440–469, 2025, doi: 10.14514/beykozad.1746992.
ISNAD Büyükbıçakcı, Erdal. “Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems”. Beykoz Akademi Dergisi 13/2 (Aralık2025), 440-469. https://doi.org/10.14514/beykozad.1746992.
JAMA Büyükbıçakcı E. Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems. Beykoz Akademi Dergisi. 2025;13:440–469.
MLA Büyükbıçakcı, Erdal. “Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems”. Beykoz Akademi Dergisi, c. 13, sy. 2, 2025, ss. 440-69, doi:10.14514/beykozad.1746992.
Vancouver Büyükbıçakcı E. Analyzing the Confluence of Algorithmic Transparency, Accountability, and Data Privacy: A Comprehensive Study on Trust Dynamics in AI Systems. Beykoz Akademi Dergisi. 2025;13(2):440-69.