Araştırma Makalesi
BibTex RIS Kaynak Göster

Electric Vehicle Charging Station Positioning Problem: Multi-Criteria Decision Making Analysis with Entropy, CoCoSo and EDAS Methods

Yıl 2024, , 187 - 202, 11.01.2025
https://doi.org/10.70754/biibfd.1594279

Öz

The increasing adoption of electric vehicles (EVs) underscores the critical need for an efficient and sustainable charging infrastructure. This study addresses the problem of optimal electric vehicle charging station (EVCS) location selection using a multi-criteria decision-making (MCDM) approach. Specifically, the Entropy, CoCoSo (Combined Compromise Solution), and EDAS (Evaluation Based on Distance from Average Solution) methods were applied to evaluate 25 potential locations in Altıeylül. The Entropy method was first employed to objectively determine the weight of each criterion based on their variability, ensuring that more significant factors had a greater impact on the final decision. Environmental, technical, and social criteria were incorporated to ensure that the selected sites would maximize accessibility, reduce air pollution, and enhance user convenience. The results revealed that Location_17 emerged as the top choice for EVCS placement based on both CoCoSo and EDAS rankings. While both methods provided consistent results for high-performing locations, significant discrepancies were observed for certain low-performing sites, highlighting the value of combining multiple MCDM methods. This study provides an informed framework for selecting optimal EVCS locations, offering a balanced evaluation of criteria, and contributes to the growing body of research on sustainable infrastructure planning for EVs.

Kaynakça

  • Bagal, D. K., Giri, A., Pattanaik, A. K., Jeet, S., Barua, A., & Panda, S. N. (2021). MCDM optimization of characteristics in resistance spot welding for dissimilar materials utilizing advanced hybrid Taguchi method-coupled CoCoSo, EDAS and WASPAS method. In Next Generation Materials and Processing Technologies: Select Proceedings of RDMPMC 2020 (pp. 475-490). Springer.
  • BalıkesirBüyükşehirBelediyesi. (2024). Ulaşım Veri Setleri. https://acikveri.balikesir.bel.tr/Veriler/VeriSetiTabloGorunum?vsadi=akilli-kavsak
  • Dimitriadou, K., Rigogiannis, N., Fountoukidis, S., Kotarela, F., Kyritsis, A., & Papanikolaou, N. (2023). Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration. Energies, 16(4), 2057. https://www.mdpi.com/1996-1073/16/4/2057
  • Endeksa. (2024). Türkiye Balıkesir Altıeylül Arazi, Bağ, Bahçe ve Tarla m² Birim Fiyatları. Türkiye Balıkesir Altıeylül Arazi, Bağ, Bahçe ve Tarla m² Birim Fiyatları
  • Karaşan, A., Kaya, İ., & Erdoğan, M. (2020). Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey. Neural Computing and Applications, 32(9), 4553-4574. https://doi.org/10.1007/s00521-018-3752-2
  • Krishankumar, R., & Ecer, F. (2024). A multi-criteria framework for electric vehicle charging location selection using double hierarchy preferences and unknown weights. Engineering Applications of Artificial Intelligence, 133, 108251. https://doi.org/https://doi.org/10.1016/j.engappai.2024.108251
  • Mazza, A., Russo, A., Chicco, G., Di Martino, A., Colombo, C. G., Longo, M., Ciliento, P., De Donno, M., Mapelli, F., & Lamberti, F. (2024). Categorization of Attributes and Features for the Location of Electric Vehicle Charging Stations. Energies, 17(16), 3920. https://www.mdpi.com/1996-1073/17/16/3920
  • Men, J., & Zhao, C. (2024). A Type-2 fuzzy hybrid preference optimization methodology for electric vehicle charging station location. Energy, 293, 130701. https://doi.org/https://doi.org/10.1016/j.energy.2024.130701
  • Mhana, K. H., & Awad, H. A. (2024). An ideal location selection of electric vehicle charging stations: Employment of integrated analytical hierarchy process with geographical information system. Sustainable Cities and Society, 107, 105456. https://doi.org/https://doi.org/10.1016/j.scs.2024.105456
  • ResmiGazete. (2022). Şarj Hizmeti Yönetmeliği. Retrieved from https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=39454&MevzuatTur=7&MevzuatTertip=5
  • Sahoo, S. K., & Goswami, S. S. (2023). A comprehensive review of multiple criteria decision-making (MCDM) Methods: advancements, applications, and future directions. Decision Making Advances, 1(1), 25-48.
  • Sani, G. M., Abas, A. M., Yusoff, N., & Said, M. F. (2023). Site selection for electric vehicle charging stations using GIS with MCDM AHP FAHP and TOPSIS techniques. A Review. IOP Conference Series: Earth and Environmental Science, 1274(1), 012019. https://doi.org/10.1088/1755-1315/1274/1/012019
  • Soczówka, P., Lasota, M., Franke, P., & Żochowska, R. (2024). Method of Determining New Locations for Electric Vehicle Charging Stations Using GIS Tools. Energies, 17(18), 4546. https://www.mdpi.com/1996-1073/17/18/4546
  • Taherdoost, H., & Madanchian, M. (2023). Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia, 3(1), 77-87. https://www.mdpi.com/2673-8392/3/1/6
  • TMMOB. (2022). Yeniköy, Kemerköy Ve Yatağan Termik Termik Santrallarının, Ülke Geneli Ve Ege Bölgesi Açısından Elektrik Üretimdeki Ve Enterkonnekte Sistem İçindeki Yerleri. https://www.mmo.org.tr/sites/default/files/gonderi_dosya_ekleri/627f5056252f27b_ek.pdf
  • Torkayesh, A. E., Ecer, F., Pamucar, D., & Karamaşa, Ç. (2021). Comparative assessment of social sustainability performance: Integrated data-driven weighting system and CoCoSo model. Sustainable Cities and Society, 71, 102975. https://doi.org/https://doi.org/10.1016/j.scs.2021.102975
  • TÜİK. (2024). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr
  • Xiong, Y., An, B., & Kraus, S. (2020). Electric vehicle charging strategy study and the application on charging station placement. Autonomous Agents and Multi-Agent Systems, 35(1), 3. https://doi.org/10.1007/s10458-020-09484-5
  • Zaino, R., Ahmed, V., Alhammadi, A. M., & Alghoush, M. (2024). Electric Vehicle Adoption: A Comprehensive Systematic Review of Technological, Environmental, Organizational and Policy Impacts. World Electric Vehicle Journal, 15(8), 375. https://www.mdpi.com/2032-6653/15/8/375
  • Zhang, S. (2023). Location Selection of Electric Vehicles Charging Stations Based on Analytical Hierarchy Process and Clustering Algorithm. Advances in Engineering Technology Research, 6(1), 631-631.
  • Zhao, H., Gao, J., & Cheng, X. (2023). Electric Vehicle Solar Charging Station Siting Study Based on GIS and Multi-Criteria Decision-Making: A Case Study of China. Sustainability, 15(14), 10967. https://www.mdpi.com/2071-1050/15/14/10967

Elektrikli Araç Şarj İstasyonu Konumlandırma Problemi: Entropi, CoCoSo ve EDAS Yöntemleriyle Çok Kriterli Karar Verme Analizi

Yıl 2024, , 187 - 202, 11.01.2025
https://doi.org/10.70754/biibfd.1594279

Öz

Elektrikli araçların giderek daha fazla benimsenmesi, verimli ve sürdürülebilir bir şarj altyapısına duyulan kritik ihtiyacın altını çizmektedir. Bu çalışma, çok kriterli karar verme yaklaşımını kullanarak optimum elektrikli araç şarj istasyonu yeri seçimi problemini ele almaktadır. Özellikle Entropi, CoCoSo ve EDAS yöntemleri Altıeylül ilçesindeki 25 potansiyel konumu değerlendirmek için uygulanmıştır. Entropi yöntemi ilk olarak her bir kriterin ağırlığını değişkenliklerine göre objektif olarak belirlemek için kullanılmış ve daha önemli faktörlerin nihai karar üzerinde daha büyük bir etkiye sahip olması sağlanmıştır. Seçilen sahaların erişilebilirliği en üst düzeye çıkarmasını, hava kirliliğini azaltmasını ve kullanıcı rahatlığını artırmasını sağlamak için çevresel, teknik ve sosyal kriterler dahil edilmiştir. Sonuçlar, Konum_17'nin hem CoCoSo hem de EDAS sıralamalarına göre elektrikli araç şarj istasyonu yerleşimi için en iyi seçenek olduğunu ortaya koymuştur. Her iki yöntem de yüksek performanslı yerler için tutarlı sonuçlar verirken, bazı düşük performanslı yerler için önemli farklılıklar gözlemlenmiş ve birden fazla ÇKKV yönteminin birleştirilmesinin değeri vurgulanmıştır. Bu çalışma, kriterlerin dengeli bir şekilde değerlendirilmesini sağlayarak optimum elektrikli araç şarj istasyonu konumlarının seçilmesi için bilinçli bir çerçeve sunmakta ve elektrikli araçlar için sürdürülebilir altyapı planlaması konusunda giderek artan araştırmalara katkıda bulunmaktadır.

Kaynakça

  • Bagal, D. K., Giri, A., Pattanaik, A. K., Jeet, S., Barua, A., & Panda, S. N. (2021). MCDM optimization of characteristics in resistance spot welding for dissimilar materials utilizing advanced hybrid Taguchi method-coupled CoCoSo, EDAS and WASPAS method. In Next Generation Materials and Processing Technologies: Select Proceedings of RDMPMC 2020 (pp. 475-490). Springer.
  • BalıkesirBüyükşehirBelediyesi. (2024). Ulaşım Veri Setleri. https://acikveri.balikesir.bel.tr/Veriler/VeriSetiTabloGorunum?vsadi=akilli-kavsak
  • Dimitriadou, K., Rigogiannis, N., Fountoukidis, S., Kotarela, F., Kyritsis, A., & Papanikolaou, N. (2023). Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration. Energies, 16(4), 2057. https://www.mdpi.com/1996-1073/16/4/2057
  • Endeksa. (2024). Türkiye Balıkesir Altıeylül Arazi, Bağ, Bahçe ve Tarla m² Birim Fiyatları. Türkiye Balıkesir Altıeylül Arazi, Bağ, Bahçe ve Tarla m² Birim Fiyatları
  • Karaşan, A., Kaya, İ., & Erdoğan, M. (2020). Location selection of electric vehicles charging stations by using a fuzzy MCDM method: a case study in Turkey. Neural Computing and Applications, 32(9), 4553-4574. https://doi.org/10.1007/s00521-018-3752-2
  • Krishankumar, R., & Ecer, F. (2024). A multi-criteria framework for electric vehicle charging location selection using double hierarchy preferences and unknown weights. Engineering Applications of Artificial Intelligence, 133, 108251. https://doi.org/https://doi.org/10.1016/j.engappai.2024.108251
  • Mazza, A., Russo, A., Chicco, G., Di Martino, A., Colombo, C. G., Longo, M., Ciliento, P., De Donno, M., Mapelli, F., & Lamberti, F. (2024). Categorization of Attributes and Features for the Location of Electric Vehicle Charging Stations. Energies, 17(16), 3920. https://www.mdpi.com/1996-1073/17/16/3920
  • Men, J., & Zhao, C. (2024). A Type-2 fuzzy hybrid preference optimization methodology for electric vehicle charging station location. Energy, 293, 130701. https://doi.org/https://doi.org/10.1016/j.energy.2024.130701
  • Mhana, K. H., & Awad, H. A. (2024). An ideal location selection of electric vehicle charging stations: Employment of integrated analytical hierarchy process with geographical information system. Sustainable Cities and Society, 107, 105456. https://doi.org/https://doi.org/10.1016/j.scs.2024.105456
  • ResmiGazete. (2022). Şarj Hizmeti Yönetmeliği. Retrieved from https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=39454&MevzuatTur=7&MevzuatTertip=5
  • Sahoo, S. K., & Goswami, S. S. (2023). A comprehensive review of multiple criteria decision-making (MCDM) Methods: advancements, applications, and future directions. Decision Making Advances, 1(1), 25-48.
  • Sani, G. M., Abas, A. M., Yusoff, N., & Said, M. F. (2023). Site selection for electric vehicle charging stations using GIS with MCDM AHP FAHP and TOPSIS techniques. A Review. IOP Conference Series: Earth and Environmental Science, 1274(1), 012019. https://doi.org/10.1088/1755-1315/1274/1/012019
  • Soczówka, P., Lasota, M., Franke, P., & Żochowska, R. (2024). Method of Determining New Locations for Electric Vehicle Charging Stations Using GIS Tools. Energies, 17(18), 4546. https://www.mdpi.com/1996-1073/17/18/4546
  • Taherdoost, H., & Madanchian, M. (2023). Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia, 3(1), 77-87. https://www.mdpi.com/2673-8392/3/1/6
  • TMMOB. (2022). Yeniköy, Kemerköy Ve Yatağan Termik Termik Santrallarının, Ülke Geneli Ve Ege Bölgesi Açısından Elektrik Üretimdeki Ve Enterkonnekte Sistem İçindeki Yerleri. https://www.mmo.org.tr/sites/default/files/gonderi_dosya_ekleri/627f5056252f27b_ek.pdf
  • Torkayesh, A. E., Ecer, F., Pamucar, D., & Karamaşa, Ç. (2021). Comparative assessment of social sustainability performance: Integrated data-driven weighting system and CoCoSo model. Sustainable Cities and Society, 71, 102975. https://doi.org/https://doi.org/10.1016/j.scs.2021.102975
  • TÜİK. (2024). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr
  • Xiong, Y., An, B., & Kraus, S. (2020). Electric vehicle charging strategy study and the application on charging station placement. Autonomous Agents and Multi-Agent Systems, 35(1), 3. https://doi.org/10.1007/s10458-020-09484-5
  • Zaino, R., Ahmed, V., Alhammadi, A. M., & Alghoush, M. (2024). Electric Vehicle Adoption: A Comprehensive Systematic Review of Technological, Environmental, Organizational and Policy Impacts. World Electric Vehicle Journal, 15(8), 375. https://www.mdpi.com/2032-6653/15/8/375
  • Zhang, S. (2023). Location Selection of Electric Vehicles Charging Stations Based on Analytical Hierarchy Process and Clustering Algorithm. Advances in Engineering Technology Research, 6(1), 631-631.
  • Zhao, H., Gao, J., & Cheng, X. (2023). Electric Vehicle Solar Charging Station Siting Study Based on GIS and Multi-Criteria Decision-Making: A Case Study of China. Sustainability, 15(14), 10967. https://www.mdpi.com/2071-1050/15/14/10967
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İşletme
Bölüm Araştırma Makaleleri
Yazarlar

Erol Özçekiç

Erken Görünüm Tarihi 10 Ocak 2025
Yayımlanma Tarihi 11 Ocak 2025
Gönderilme Tarihi 1 Aralık 2024
Kabul Tarihi 11 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Özçekiç, E. (2025). Electric Vehicle Charging Station Positioning Problem: Multi-Criteria Decision Making Analysis with Entropy, CoCoSo and EDAS Methods. Biga İktisadi Ve İdari Bilimler Fakültesi Dergisi, 5(3), 187-202. https://doi.org/10.70754/biibfd.1594279