Derleme
BibTex RIS Kaynak Göster

Humoral Immune Responses After Nosema Infection in Honey Bees (Apis mellifera L.)

Yıl 2024, Cilt: 4 Sayı: 1, 15 - 24, 07.07.2024

Öz

Honey bees ( Apis mellifera L.) are an economically and ecologically important insect group as pollinators of many wild and agricultural plants. Colony losses that continue every year make beekeeping economically unsustainable. In addition, productivity decreases in the production of plants that need to be pollinated. This situation jeopardizes the future of the food reserves that people currently consume. With the influence of biotic and abiotic factors worldwide, Nosemosis causes critical colony losses, especially during the transition from winter to spring. Due to nosemosis, changes occur in the physiology and behavior of bees. It has been observed that nurse bees working in the hive go out looking for food in a shorter time than usual. For this reason, the order of the colony is disrupted and the survival of new generations is at risk. Bees have an immune system that can defend themselves against attacks from different pathogens. This system includes physical barriers as the first line of defense and innate cellular and humoral immunity as the second line of defense. Antimicrobial peptides (AMPs) apidaecin, abaecin, hymenoptaecin and defensin, which are components of humoral immunity, contribute greatly to the defense against microorganisms. However, it has been revealed that the expression levels of AMPs decrease as a result of suppression of the immune system of honey bees after Nosemosis. Therefore, understanding the interaction between Nosemosis and immune mechanisms and therefore developing methods to challenge this disease is very valuable in terms of bee health and bee keeping economy.

Etik Beyan

Yok

Destekleyen Kurum

Yok

Teşekkür

Yok

Kaynakça

  • [1] Kunc, M., Dobeš, P., Hurychová, J., Vojtek, L., Poiani, S. B., Danihlík, J., ... & Hyršl, P. (2019). The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: A search for biochemical markers of longevity. Insects, 10(8), 244.
  • [2] Goblirsch, M., Huang, Z. Y., & Spivak, M. (2013). Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One, 8(3), e58165.
  • [3] Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of invertebrate pathology, 92(2), 93-95.
  • [4] Zander, E. N. O. C. H. (1909). Tierische parasiten als krankenheitserreger bei der biene. Münchener Bienenzeitung, 31, 196-204.
  • [5] Fries, I., Feng, F., da Silva, A., Slemenda, S. B., & Pieniazek, N. J. (1996). Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 32(3), 356-365.
  • [6] Goblirsch, M. (2018). Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie, 49(1), 131-150.
  • [7] Fries, I., Chauzat, M. P., Chen, Y. P., Doublet, V., Genersch, E., Gisder, S., ... & Williams, G. R. (2013). Standard methods for Nosema research. Journal of apicultural research, 52(1), 1-28.
  • [8] Kane, T. R., & Faux, C. M. (Eds.). (2021). Honey bee medicine for the veterinary practitioner. John Wiley & Sons.
  • [9] Galajda, R., Valenčáková, A., Sučik, M., & Kandráčová, P. (2021). Nosema disease of European honey bees. Journal of Fungi, 7(9), 714.
  • [10] Chemurot, M., De Smet, L., Brunain, M., De Rycke, R., & de Graaf, D. C. (2017). Nosema neumanni n. sp. (Microsporidia, Nosematidae), a new microsporidian parasite of honeybees, Apis mellifera in Uganda. European journal of protistology, 61, 13-19.
  • [11] Chen, Y. P., Evans, J. D., Murphy, C., Gutell, R., Zuker, M., Gundensen-Rindal, D. A. W. N., & Pettis, J. S. (2009). Morphological, Molecular, and Phylogenetic Characterization of Nosema ceranae, a Microsporidian Parasite Isolated from the European Honey Bee, Apis mellifera 1. Journal of Eukaryotic Microbiology, 56(2), 142-147.
  • [12] Frixione, E., Ruiz, L., Santillán, M., de Vargas, L. V., Tejero, J. M., & Undeen, A. H. (1992). Dynamics of polar filament discharge and sporoplasm expulsion by microsporidian spores. Cell motility and the cytoskeleton, 22(1), 38- 50.
  • [13] Gisder, S., Möckel, N., Linde, A., & Genersch, E. (2011). A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee-pathogenic microsporidia. Environmental microbiology, 13(2), 404-413.
  • [14] Bailey, L., & Ball, B. V. (1991). Honey bee pathology.
  • [15] Tsakas, S., & Marmaras, V. J. (2010). Insect immunity and its signalling: an overview. Invertebrate Survival Journal, 7(2), 228-238.
  • [16] Yelkovan, S., 2023, “Bal Arısı Apis mellifera (Apidae: Hymenoptera)’da Hemosit Tiplerinin Belirlenmesi ve Metamorfoz Sürecinde İnsülin Hormonunun Antimikrobiyal Peptidler Üzerine Etkilerinin Araştırılması (Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü).
  • [17] Larsen, A., Reynaldi, F. J., & Guzmán-Novoa, E. (2019). Fundaments of the honey bee (Apis mellifera) immune system. Review. Revista mexicana de ciencias pecuarias, 10(3), 705-728.
  • [18] Lavine, M. D., & Strand, M. R. (2002). Insect hemocytes and their role in immunity. Insect biochemistry and molecular biology, 32(10), 1295-1309.
  • [19] Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., & Higes, M. (2009). Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental microbiology, 11(9), 2284-2290.
  • [20] Chan, M. Y. M., 2012, Development and application of honey bee in vitro systems (Doctoral dissertation, University of British Columbia).
  • [21] Bulet, P., Hetru, C., Dimarcq, J. L. and Hoffmann, D., 1999, Antimicrobial peptides in insects; structure and function. Developmental & Comparative Immunology, 23(4-5), 329-344 pp.
  • [22] Wu, Q., Patočka, J. and Kuča, K., 2018, Insect antimicrobial peptides, a mini review, Toxins, 10 (11), 461 p.
  • [23] Imler, J. L. and Bulet, P., 2005, Antimicrobial peptides in Drosophila: structures, activities and gene regulation, Mechanisms of epithelial defense, 86, 1-21 pp.
  • [24] Wang, Y. P. and Lai, R., 2010, Insect antimicrobial peptides: structures, properties and gene regulation. Ravi, C., Jeyashree, A. and Devi, K. R., 2011, Antimicrobial peptides from insects: an overview, Research in biotechnology, 2(5), 1-7 pp.
  • [25] Ravi, C., Jeyashree, A., & Devi, K. R. (2011). Antimicrobial peptides from insects: an overview. Research in biotechnology, 2(5).
  • [26] Casteels, P., Ampe, C., Jacobs, F., Vaeck, M., & Tempst, P. J. T. E. J. (1989). Apidaecins: antibacterial peptides from honeybees. The EMBO journal, 8(8), 2387-2391.
  • [27] Casteels, P., Ampe, C., Riviere, L., Van Damme, J., Elicone, C., Fleming, M., ... & Tempst, P. (1990). Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). European journal of biochemistry, 187(2), 381-386.
  • [28] Casteels, P., Ampe, C., Jacobs, F., & Tempst, P. (1993). Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). Journal of Biological Chemistry, 268(10), 7044-7054.
  • [29] Casteels-Josson, K., Zhang, W., Capaci, T., Casteels, P., & Tempst, P. (1994). Acute transcriptional response of the honeybee peptide-antibiotics gene repertoire and required post-translational conversion of the precursor structures. Journal of Biological Chemistry, 269(46), 28569-28575.
  • [30] Li, W., Evans, J. D., Li, J., Su, S., Hamilton, M., & Chen, Y. (2017). Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitology research, 116, 3265-3274.
  • [31] Higes, M., Martín-Hernández, R., & Meana, A. (2010). Nosema ceranae in Europa: eine neu auftretende Nosemose Typ C. Apidologie, 41, 375-392.
  • [32] Smith, M. L. (2012). The honey bee parasite Nosema ceranae: transmissible via food exchange?.
  • [33] Huang, Q., Chen, Y. P., Wang, R. W., Cheng, S., & Evans, J. D. (2016). Host-parasite interactions and purifying selection in a microsporidian parasite of honey bees. PloS one, 11(2), e0147549.
  • [34] Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J. D., & Pettis, J. S. (2014). Effects of host age on susceptibility to infection and immune gene expression in honey bee queens (Apis mellifera) inoculated with Nosema ceranae. Apidologie, 45, 451-463.
  • [35] Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., ... & Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect molecular biology, 15(5), 645-656.
  • [36] Lourenço, A. P., Guidugli-Lazzarini, K. R., de Freitas, N. H., Message, D., Bitondi, M. M., Simões, Z. L., & Teixeira, É. W. (2021). Immunity and physiological changes in adult honey bees (Apis mellifera) infected with Nosema ceranae: The natural colony environment. Journal of Insect Physiology, 131, 104237.

Humoral Immune Responses After Nosema Infection in Honey Bees (Apis mellifera L.)

Yıl 2024, Cilt: 4 Sayı: 1, 15 - 24, 07.07.2024

Öz

Honey bees ( Apis mellifera L.) are an economically and ecologically important insect group as pollinators of many wild and agricultural plants. Colony losses that continue every year make beekeeping economically unsustainable. In addition, productivity decreases in the production of plants that need to be pollinated. This situation jeopardizes the future of the food reserves that people currently consume. With the influence of biotic and abiotic factors worldwide, Nosemosis causes critical colony losses, especially during the transition from winter to spring. Due to nosemosis, changes occur in the physiology and behavior of bees. It has been observed that nurse bees working in the hive go out looking for food in a shorter time than usual. For this reason, the order of the colony is disrupted and the survival of new generations is at risk. Bees have an immune system that can defend themselves against attacks from different pathogens. This system includes physical barriers as the first line of defense and innate cellular and humoral immunity as the second line of defense.Antimicrobial peptides (AMPs) apidaecin, abaecin, hymenoptaecin and defensin, which are components of humoral immunity, contribute greatly to the defense against microorganisms. However, it has been revealed that the expression levels of AMPs decrease as a result of suppression of the immune system of honey bees after Nosemosis. Therefore, understanding the interaction between Nosemosis and immune mechanisms and therefore developing methods to challenge this disease is very valuable in terms of bee health and beekeeping economy.

Etik Beyan

Yok

Destekleyen Kurum

Yok

Teşekkür

Yok

Kaynakça

  • [1] Kunc, M., Dobeš, P., Hurychová, J., Vojtek, L., Poiani, S. B., Danihlík, J., ... & Hyršl, P. (2019). The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: A search for biochemical markers of longevity. Insects, 10(8), 244.
  • [2] Goblirsch, M., Huang, Z. Y., & Spivak, M. (2013). Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One, 8(3), e58165.
  • [3] Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of invertebrate pathology, 92(2), 93-95.
  • [4] Zander, E. N. O. C. H. (1909). Tierische parasiten als krankenheitserreger bei der biene. Münchener Bienenzeitung, 31, 196-204.
  • [5] Fries, I., Feng, F., da Silva, A., Slemenda, S. B., & Pieniazek, N. J. (1996). Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 32(3), 356-365.
  • [6] Goblirsch, M. (2018). Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie, 49(1), 131-150.
  • [7] Fries, I., Chauzat, M. P., Chen, Y. P., Doublet, V., Genersch, E., Gisder, S., ... & Williams, G. R. (2013). Standard methods for Nosema research. Journal of apicultural research, 52(1), 1-28.
  • [8] Kane, T. R., & Faux, C. M. (Eds.). (2021). Honey bee medicine for the veterinary practitioner. John Wiley & Sons.
  • [9] Galajda, R., Valenčáková, A., Sučik, M., & Kandráčová, P. (2021). Nosema disease of European honey bees. Journal of Fungi, 7(9), 714.
  • [10] Chemurot, M., De Smet, L., Brunain, M., De Rycke, R., & de Graaf, D. C. (2017). Nosema neumanni n. sp. (Microsporidia, Nosematidae), a new microsporidian parasite of honeybees, Apis mellifera in Uganda. European journal of protistology, 61, 13-19.
  • [11] Chen, Y. P., Evans, J. D., Murphy, C., Gutell, R., Zuker, M., Gundensen-Rindal, D. A. W. N., & Pettis, J. S. (2009). Morphological, Molecular, and Phylogenetic Characterization of Nosema ceranae, a Microsporidian Parasite Isolated from the European Honey Bee, Apis mellifera 1. Journal of Eukaryotic Microbiology, 56(2), 142-147.
  • [12] Frixione, E., Ruiz, L., Santillán, M., de Vargas, L. V., Tejero, J. M., & Undeen, A. H. (1992). Dynamics of polar filament discharge and sporoplasm expulsion by microsporidian spores. Cell motility and the cytoskeleton, 22(1), 38- 50.
  • [13] Gisder, S., Möckel, N., Linde, A., & Genersch, E. (2011). A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee-pathogenic microsporidia. Environmental microbiology, 13(2), 404-413.
  • [14] Bailey, L., & Ball, B. V. (1991). Honey bee pathology.
  • [15] Tsakas, S., & Marmaras, V. J. (2010). Insect immunity and its signalling: an overview. Invertebrate Survival Journal, 7(2), 228-238.
  • [16] Yelkovan, S., 2023, “Bal Arısı Apis mellifera (Apidae: Hymenoptera)’da Hemosit Tiplerinin Belirlenmesi ve Metamorfoz Sürecinde İnsülin Hormonunun Antimikrobiyal Peptidler Üzerine Etkilerinin Araştırılması (Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü).
  • [17] Larsen, A., Reynaldi, F. J., & Guzmán-Novoa, E. (2019). Fundaments of the honey bee (Apis mellifera) immune system. Review. Revista mexicana de ciencias pecuarias, 10(3), 705-728.
  • [18] Lavine, M. D., & Strand, M. R. (2002). Insect hemocytes and their role in immunity. Insect biochemistry and molecular biology, 32(10), 1295-1309.
  • [19] Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., & Higes, M. (2009). Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental microbiology, 11(9), 2284-2290.
  • [20] Chan, M. Y. M., 2012, Development and application of honey bee in vitro systems (Doctoral dissertation, University of British Columbia).
  • [21] Bulet, P., Hetru, C., Dimarcq, J. L. and Hoffmann, D., 1999, Antimicrobial peptides in insects; structure and function. Developmental & Comparative Immunology, 23(4-5), 329-344 pp.
  • [22] Wu, Q., Patočka, J. and Kuča, K., 2018, Insect antimicrobial peptides, a mini review, Toxins, 10 (11), 461 p.
  • [23] Imler, J. L. and Bulet, P., 2005, Antimicrobial peptides in Drosophila: structures, activities and gene regulation, Mechanisms of epithelial defense, 86, 1-21 pp.
  • [24] Wang, Y. P. and Lai, R., 2010, Insect antimicrobial peptides: structures, properties and gene regulation. Ravi, C., Jeyashree, A. and Devi, K. R., 2011, Antimicrobial peptides from insects: an overview, Research in biotechnology, 2(5), 1-7 pp.
  • [25] Ravi, C., Jeyashree, A., & Devi, K. R. (2011). Antimicrobial peptides from insects: an overview. Research in biotechnology, 2(5).
  • [26] Casteels, P., Ampe, C., Jacobs, F., Vaeck, M., & Tempst, P. J. T. E. J. (1989). Apidaecins: antibacterial peptides from honeybees. The EMBO journal, 8(8), 2387-2391.
  • [27] Casteels, P., Ampe, C., Riviere, L., Van Damme, J., Elicone, C., Fleming, M., ... & Tempst, P. (1990). Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). European journal of biochemistry, 187(2), 381-386.
  • [28] Casteels, P., Ampe, C., Jacobs, F., & Tempst, P. (1993). Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). Journal of Biological Chemistry, 268(10), 7044-7054.
  • [29] Casteels-Josson, K., Zhang, W., Capaci, T., Casteels, P., & Tempst, P. (1994). Acute transcriptional response of the honeybee peptide-antibiotics gene repertoire and required post-translational conversion of the precursor structures. Journal of Biological Chemistry, 269(46), 28569-28575.
  • [30] Li, W., Evans, J. D., Li, J., Su, S., Hamilton, M., & Chen, Y. (2017). Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitology research, 116, 3265-3274.
  • [31] Higes, M., Martín-Hernández, R., & Meana, A. (2010). Nosema ceranae in Europa: eine neu auftretende Nosemose Typ C. Apidologie, 41, 375-392.
  • [32] Smith, M. L. (2012). The honey bee parasite Nosema ceranae: transmissible via food exchange?.
  • [33] Huang, Q., Chen, Y. P., Wang, R. W., Cheng, S., & Evans, J. D. (2016). Host-parasite interactions and purifying selection in a microsporidian parasite of honey bees. PloS one, 11(2), e0147549.
  • [34] Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J. D., & Pettis, J. S. (2014). Effects of host age on susceptibility to infection and immune gene expression in honey bee queens (Apis mellifera) inoculated with Nosema ceranae. Apidologie, 45, 451-463.
  • [35] Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., ... & Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect molecular biology, 15(5), 645-656.
  • [36] Lourenço, A. P., Guidugli-Lazzarini, K. R., de Freitas, N. H., Message, D., Bitondi, M. M., Simões, Z. L., & Teixeira, É. W. (2021). Immunity and physiological changes in adult honey bees (Apis mellifera) infected with Nosema ceranae: The natural colony environment. Journal of Insect Physiology, 131, 104237.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polen Bilimi
Bölüm Derleme
Yazarlar

Sedat Yelkovan 0000-0002-7209-6350

Gönderilme Tarihi 10 Haziran 2024
Kabul Tarihi 7 Temmuz 2024
Yayımlanma Tarihi 7 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 1

Kaynak Göster

APA Yelkovan, S. (2024). Humoral Immune Responses After Nosema Infection in Honey Bees (Apis mellifera L.). BinBee – Arı ve Doğal Ürünler Dergisi, 4(1), 15-24.