Derleme
BibTex RIS Kaynak Göster

Apis Mellifera

Yıl 2024, Cilt: 4 Sayı: 2, 1 - 11, 31.12.2024

Öz

Honeybees (Apis mellifera L.) play a crucial role in cross-pollination, enhancing genetic
variation in plants and supporting their propagation through seed formation. This vital
ecological function contributes to sustainable agriculture and global biodiversity. In addition to
pollination, honeybees provide various products with significant applications in medicine,
alternative therapy, and diverse industries. Honey, a nutrient-rich substance with antimicrobial
and healing properties, has been used since ancient times for nutritional and therapeutic
purposes. Propolis, composed of resins, wax, essential oils, and phenolic compounds, exhibits
antimicrobial, antioxidant, and wound-healing properties and finds applications in
pharmaceuticals, cosmetics, and food preservation. Royal jelly, rich in proteins, vitamins, and
unique fatty acids like 10-HDA, demonstrates antimicrobial and anti-inflammatory effects and
is widely used for health enhancement. Bee venom, containing bioactive peptides such as
melittin and apamin, has therapeutic applications in conditions like arthritis and skin treatments
but requires careful handling due to its allergenic potential. Beeswax, composed of complex
organic compounds, is utilized in cosmetics, pharmaceuticals, and biofuel production due to its
chemical stability and waterproofing properties. Lastly, bee pollen, a nutrient-dense superfood,
is known for its high protein and vitamin content and is used in treating cardiovascular diseases,
cancer, and diabetes. These diverse applications underscore the ecological and economic
importance of honeybee products

Etik Beyan

Yok

Destekleyen Kurum

Yok

Proje Numarası

yok

Teşekkür

Yok

Kaynakça

  • [1] Bolek, Y., Tekerek, H., Hayat, K., & Bardak, A. (2016). Screening of cotton genotypes for protein content, oil and fatty acid composition. Journal of Agricultural Science, 8(5), 107.
  • [2] Çelik, S., Bardak, A., & Erdoğan, O. (2019). Screening of upland cotton genotypes (Gossypium hirsutum L.) against cotton verticillium (Verticillium dahliae Kleb.) Wilt. Bangladesh Journal of Botany, 48(4), 1185-1192.
  • [3] Çelik, S. (2022). Genetic Diversity Analysis of Some Upland Cotton (Gossypium hirsutumL.) Genotypes Using SSR Markers. Türk Doğa ve Fen Dergisi, 11(1), 80-89.
  • [4] Bardak, A., Çelik, S., Erdoğan, O., Ekinci, R., & Dumlupinar, Z. (2021). Association mapping of Verticillium wilt disease in a worldwide cAgricultureollection of cotton (Gossypium hirsutum L.). Plants, 10(2), 306.
  • [5] Çelik, S., Bardak, A., Erdoğan, O., Parlak, D., Uçar, R., Tekerek, H., ... & Hayat, K. B. (2017). Determination of the response of some cotton varieties to cotton wilt disease caused by Verticillium dahliae Kleb. Turkish Journal of -Food Science and Technology, 5(12), 1488-1492.
  • [6] Fisher, C. H. (1981). History of natural fibers. Journal of Macromolecular Science— Chemistry, 15(7), 1345-1375.
  • [7] Smith, C. E. (1965). Plant fibers and civilization: Cotton, a case in point. Economic Botany, 19(1), 71-82.
  • [8] Lee, J. A., & Fang, D. D. (2015). Cotton as a world crop: origin, history, and current status. Cotton, 57, 1-23.
  • [9] Witjaksono, J., Wei, X., Mao, S., Gong, W., Li, Y., & Yuan, Y. (2014). Yield and economic performance of the use of GM cotton worldwide over time: A review and meta-analysis. China Agricultural Economic Review, 6(4), 616-643.
  • [10] Basal, H., Karademir, E., Goren, H. K., Sezener, V., Dogan, M. N., Gencsoylu, I., & Erdogan, O. (2019). Cotton production in Turkey and Europe. Cotton production, 297-321.
  • [11] Johnson, J. D., Kiawu, J., MacDonald, S., Meyer, L. A., & Skelly, C. (2012). The world and United States cotton outlook.
  • [12] Çelik, S. (2020). Bazı upland pamuk (Gossypium hirsutum L.) çeşitlerinin çimlenme döneminde farklı tuz (NaCI) seviyelerine karşı toleranslarının belirlenmesi. Türk Doğa ve Fen Dergisi, 9(2), 112-117.
  • [13] Çelik, S. (2023). Assessing drought tolerance in a large number of upland cotton plants (Gossypium hirsutum L.) under different irrigation regimes at the seedling stage. Life, 13(10), 2067.
  • [14] Farooq, J., Farooq, A., Riaz, M., Shahid, M. R., Saeed, F., Iqbal, M. S., ... & Mahmood, A. (2014). Cotton leaf curl virus disease a principle cause of decline in cotton productivity in Pakistan (a mini review). Can J Plant Prot, 2, 9-16.
  • [15] Farooq, A., Farooq, J., Mahmood, A., Shakeel, A., Rehman, K. A., Batool, A., ... & Mehboob, S. (2011). An overview of cotton leaf curl virus disease (CLCuD) a serious threat to cotton productivity. Australian Journal of Crop Science, 5(13), 1823-1831.
  • [16] Anjum, Z.I., Muhammad T. Azhar, Hayat, K., Farzana Ashraf, Umbreen Shahzad & Muhammad Azam, 2014. Development of high yielding and CLCuV resistant ulpand cotton variety “CIM608”. Pak. J. Phytopathol., Vol. 26 (01). 23-32.
  • [17] Anjum, Z. I., Hayat, K., S. Celik., T. M. Azhar, U. Shehzad, F. Ashraf, Tariq M., H., T. Mehmood & M. Azam. 2015. Development of cotton leaf curl virus tolerance varieties through interspecific hybridization. African J. of Agri. Res. Vol. 10(13): 1612-1627.
  • [18] Brown, J. K., & Khan, Z. (2022). Breeding cotton for cotton leaf curl disease resistance. In Cotton Breeding and Biotechnology (pp. 171-197). CRC Press.
  • [19] Boulton, M. 2005. Geminiviruses: major threats to world agriculture. Annals of Applied Biology: 142(2):143143.
  • [20] Rehman, M., D., Hussain and Y. Zafar, 2003. Estimation of genetic divergence among elite cotton cultivars- genotypes by DNA finger-printing technology. Crop Sci., 42: 2137-2144.
  • [21] Iqbal Z., Sattar M. N., Kvarnheden A., Mansoor S., Briddon R. W. (2012). Effects of the mutation of selected genes of Cotton leaf curl Kokhran virus on infectivity, symptoms and the maintenance of Cotton leaf curl Multan beta satellite. Virus Res. 169 107–116.
  • [22] Blank LM and Leathers CR (1963). Environmental and other factors influencing development of south western cotton rust. Phytopathology 53: 921-928.
  • [23] Amin KC (1940). Interspecific hybridization between Asiatic and new world cottons. Ind. J. Agric. Sci.404-412.
  • [24] Liang Z, Jiang R, Zhong W, He J, et al. (2002). Creation of the technique of interspecific hybridization for breeding in cotton. Sci. China C Life Sci. 45: 331-336.
  • [25] Shepherd, R. L. (1974). Registration of Auburn 623 RNR cotton germplasm (Reg. No. GP20). Crop Science 14:911.
  • [26] Sacks, E.J and Robinson, A.F. (2009). Introgression of resistance to reniform nematode (Rotylenchulus reniformis) into upland cotton (Gossypium hirsutum) from Gossypium arboreum and a G. hirsutum/Gossypium aridum bridging line. Field Crops Res. 112: 1-6.
  • [27] Bird, L.S. 1973. Cotton. In the ‘Breeding plants for disease resistance, concepts and applications.’ Edited by R.R. Nelson. pp. 181-198. The Pennsylvania State Univ. Press, Univ. Park., Pa., U.S.A.
  • [28] Muramoto H. 1969. Hexaploid cotton. Some plant and fibre properties. Crop Science 9: 27-29

HONEY BEE (Apis mellifera L.) PRODUCTS AND COMPREHENSIVE USAGE AREAS

Yıl 2024, Cilt: 4 Sayı: 2, 1 - 11, 31.12.2024

Öz

Honeybees (Apis mellifera L.) play a crucial role in cross-pollination, enhancing genetic
variation in plants and supporting their propagation through seed formation. This vital
ecological function contributes to sustainable agriculture and global biodiversity. In addition to
pollination, honeybees provide various products with significant applications in medicine,
alternative therapy, and diverse industries. Honey, a nutrient-rich substance with antimicrobial
and healing properties, has been used since ancient times for nutritional and therapeutic
purposes. Propolis, composed of resins, wax, essential oils, and phenolic compounds, exhibits
antimicrobial, antioxidant, and wound-healing properties and finds applications in
pharmaceuticals, cosmetics, and food preservation. Royal jelly, rich in proteins, vitamins, and
unique fatty acids like 10-HDA, demonstrates antimicrobial and anti-inflammatory effects and
is widely used for health enhancement. Bee venom, containing bioactive peptides such as
melittin and apamin, has therapeutic applications in conditions like arthritis and skin treatments
but requires careful handling due to its allergenic potential. Beeswax, composed of complex
organic compounds, is utilized in cosmetics, pharmaceuticals, and biofuel production due to its
chemical stability and waterproofing properties. Lastly, bee pollen, a nutrient-dense superfood,
is known for its high protein and vitamin content and is used in treating cardiovascular diseases,
cancer, and diabetes. These diverse applications underscore the ecological and economic
importance of honeybee products

Etik Beyan

yok

Destekleyen Kurum

yok

Proje Numarası

yok

Teşekkür

yok

Kaynakça

  • [1] Bolek, Y., Tekerek, H., Hayat, K., & Bardak, A. (2016). Screening of cotton genotypes for protein content, oil and fatty acid composition. Journal of Agricultural Science, 8(5), 107.
  • [2] Çelik, S., Bardak, A., & Erdoğan, O. (2019). Screening of upland cotton genotypes (Gossypium hirsutum L.) against cotton verticillium (Verticillium dahliae Kleb.) Wilt. Bangladesh Journal of Botany, 48(4), 1185-1192.
  • [3] Çelik, S. (2022). Genetic Diversity Analysis of Some Upland Cotton (Gossypium hirsutumL.) Genotypes Using SSR Markers. Türk Doğa ve Fen Dergisi, 11(1), 80-89.
  • [4] Bardak, A., Çelik, S., Erdoğan, O., Ekinci, R., & Dumlupinar, Z. (2021). Association mapping of Verticillium wilt disease in a worldwide cAgricultureollection of cotton (Gossypium hirsutum L.). Plants, 10(2), 306.
  • [5] Çelik, S., Bardak, A., Erdoğan, O., Parlak, D., Uçar, R., Tekerek, H., ... & Hayat, K. B. (2017). Determination of the response of some cotton varieties to cotton wilt disease caused by Verticillium dahliae Kleb. Turkish Journal of -Food Science and Technology, 5(12), 1488-1492.
  • [6] Fisher, C. H. (1981). History of natural fibers. Journal of Macromolecular Science— Chemistry, 15(7), 1345-1375.
  • [7] Smith, C. E. (1965). Plant fibers and civilization: Cotton, a case in point. Economic Botany, 19(1), 71-82.
  • [8] Lee, J. A., & Fang, D. D. (2015). Cotton as a world crop: origin, history, and current status. Cotton, 57, 1-23.
  • [9] Witjaksono, J., Wei, X., Mao, S., Gong, W., Li, Y., & Yuan, Y. (2014). Yield and economic performance of the use of GM cotton worldwide over time: A review and meta-analysis. China Agricultural Economic Review, 6(4), 616-643.
  • [10] Basal, H., Karademir, E., Goren, H. K., Sezener, V., Dogan, M. N., Gencsoylu, I., & Erdogan, O. (2019). Cotton production in Turkey and Europe. Cotton production, 297-321.
  • [11] Johnson, J. D., Kiawu, J., MacDonald, S., Meyer, L. A., & Skelly, C. (2012). The world and United States cotton outlook.
  • [12] Çelik, S. (2020). Bazı upland pamuk (Gossypium hirsutum L.) çeşitlerinin çimlenme döneminde farklı tuz (NaCI) seviyelerine karşı toleranslarının belirlenmesi. Türk Doğa ve Fen Dergisi, 9(2), 112-117.
  • [13] Çelik, S. (2023). Assessing drought tolerance in a large number of upland cotton plants (Gossypium hirsutum L.) under different irrigation regimes at the seedling stage. Life, 13(10), 2067.
  • [14] Farooq, J., Farooq, A., Riaz, M., Shahid, M. R., Saeed, F., Iqbal, M. S., ... & Mahmood, A. (2014). Cotton leaf curl virus disease a principle cause of decline in cotton productivity in Pakistan (a mini review). Can J Plant Prot, 2, 9-16.
  • [15] Farooq, A., Farooq, J., Mahmood, A., Shakeel, A., Rehman, K. A., Batool, A., ... & Mehboob, S. (2011). An overview of cotton leaf curl virus disease (CLCuD) a serious threat to cotton productivity. Australian Journal of Crop Science, 5(13), 1823-1831.
  • [16] Anjum, Z.I., Muhammad T. Azhar, Hayat, K., Farzana Ashraf, Umbreen Shahzad & Muhammad Azam, 2014. Development of high yielding and CLCuV resistant ulpand cotton variety “CIM608”. Pak. J. Phytopathol., Vol. 26 (01). 23-32.
  • [17] Anjum, Z. I., Hayat, K., S. Celik., T. M. Azhar, U. Shehzad, F. Ashraf, Tariq M., H., T. Mehmood & M. Azam. 2015. Development of cotton leaf curl virus tolerance varieties through interspecific hybridization. African J. of Agri. Res. Vol. 10(13): 1612-1627.
  • [18] Brown, J. K., & Khan, Z. (2022). Breeding cotton for cotton leaf curl disease resistance. In Cotton Breeding and Biotechnology (pp. 171-197). CRC Press.
  • [19] Boulton, M. 2005. Geminiviruses: major threats to world agriculture. Annals of Applied Biology: 142(2):143143.
  • [20] Rehman, M., D., Hussain and Y. Zafar, 2003. Estimation of genetic divergence among elite cotton cultivars- genotypes by DNA finger-printing technology. Crop Sci., 42: 2137-2144.
  • [21] Iqbal Z., Sattar M. N., Kvarnheden A., Mansoor S., Briddon R. W. (2012). Effects of the mutation of selected genes of Cotton leaf curl Kokhran virus on infectivity, symptoms and the maintenance of Cotton leaf curl Multan beta satellite. Virus Res. 169 107–116.
  • [22] Blank LM and Leathers CR (1963). Environmental and other factors influencing development of south western cotton rust. Phytopathology 53: 921-928.
  • [23] Amin KC (1940). Interspecific hybridization between Asiatic and new world cottons. Ind. J. Agric. Sci.404-412.
  • [24] Liang Z, Jiang R, Zhong W, He J, et al. (2002). Creation of the technique of interspecific hybridization for breeding in cotton. Sci. China C Life Sci. 45: 331-336.
  • [25] Shepherd, R. L. (1974). Registration of Auburn 623 RNR cotton germplasm (Reg. No. GP20). Crop Science 14:911.
  • [26] Sacks, E.J and Robinson, A.F. (2009). Introgression of resistance to reniform nematode (Rotylenchulus reniformis) into upland cotton (Gossypium hirsutum) from Gossypium arboreum and a G. hirsutum/Gossypium aridum bridging line. Field Crops Res. 112: 1-6.
  • [27] Bird, L.S. 1973. Cotton. In the ‘Breeding plants for disease resistance, concepts and applications.’ Edited by R.R. Nelson. pp. 181-198. The Pennsylvania State Univ. Press, Univ. Park., Pa., U.S.A.
  • [28] Muramoto H. 1969. Hexaploid cotton. Some plant and fibre properties. Crop Science 9: 27-29
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polen Bilimi, Tarımda Bitki Biyoteknolojisi
Bölüm Honey Bee (Apis Mellifera L.) Products and Comprehensıve Usage Areas
Yazarlar

Sadettin Çelik 0000-0002-0588-1391

Proje Numarası yok
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 20 Aralık 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 2

Kaynak Göster

APA Çelik, S. (2024). Apis Mellifera. BinBee – Arı ve Doğal Ürünler Dergisi, 4(2), 1-11.