Araştırma Makalesi
BibTex RIS Kaynak Göster

ASSESSMENT OF GENETIC DIVERSITY IN GARDEN PEA (Pisum sativum L.) GENOTYPES FOR VARIOUS QUANTITATIVE TRAITS

Yıl 2024, Cilt: 4 Sayı: 2, 18 - 32, 31.12.2024

Öz

Pea (Pisum sativum L.) a member of the Fabaceae family is one of the most significant pulse
crops due to its high nutritive values compared to other pulses. The yield potential of local varieties
is very low as compared to varieties of other countries. The present study was sown under a
randomized complete block design (RCBD) to explore the genetic variability of various
quantitative parameters in 30 genotypes of peas with three replications. Data were collected for
traits like days to first bloom, 50% flowering time, maturity, plant height (cm), distance between
the nodes (cm), total number of nodes per plant, total number of pods per plant, pod size (cm),
width of pods (cm), total number of seeds per pod, 100 seed weight (g) and yield per plant (g).
The results revealed that all the genotypes revealed substantial differences for the traits under
study. The estimates of broad sense heritability revealed that high heritability was observed
among all the attributes and the number of pods per plant exhibited maximum heritability. The
dendrogram constructed from the genotypic data grouped 30 genotypes into three major groups.
Cluster one was the largest sub-divided into two sub-clusters containing 13 genotypes followed
by cluster two includes 6 genotypes that are comparable to each other. The greatest inter-cluster
distance was found among clusters 2 and 3 (87.87). Correlation analysis revealed that the height
of the plant, nodes per plant, the width of the pod, number of pods per plant, pod size, number of
seeds per pod, and 100-seed weight showed positive and extremely significant association by
the yield per plant. Path coefficient analysis showed that 50% flowering time followed by pods per
plant exhibited a maximum positive effect on plant yield

Kaynakça

  • [1]Jha, A.B., K.K. Gali, Z. Alam, V.B. Lachagari, and T.D. Warkentin. 2021. Potential application of genomic technologies in breeding for fungal and oomycete disease resistance in pea. Agron. 11: 1260.
  • [2]Gupta, A., B. Singh, M. Kumar and P. Chand. 2020. Studies on Genetic Variability, Heritability and Genetic Advance in Table Pea (Pisum sativum var. hotense L.). Int. J. Curr. Microbiol. App. Sci. 9: 34493454.
  • [3]Senapati, A.K., A.K. Varshney, and K.V. Sharma. 2019. Dehydration of green peas: A review. Int. J. Chem. Stud. 7: 1088-1091.
  • [4]Michaels, T.E. 2015. Grain legumes and their dietary impact: overview. The World of Food Grains, 265-273.
  • [5]Krefting, J. 2017. The appeal of pea protein. J. Ren Nutr. 27: 31-33.
  • [6]Rawal, V., R. Charrondiere, M. Xipsiti, and F. Grande. 2019. Pulses: nutritional benefits and consumption patterns. The Global Economy of Pulses, pp. 9-19.
  • [7]Tayeh, N., G. Aubert, M.L. Pilet-Nayel, I. Lejeune-Hénaut, T.D. Warkentin, and J. Burstin. 2015. Genomic tools in pea breeding programs: status and perspectives. Front. Plant Sci. 6: 1037.
  • [8]Nawab, N.N., G.M. Subhani, K. Mahmood, Q. Shakil, and A. Saeed 2008. Genetic variability, correlation and path analysis studies in garden pea (Pisum sativum L.). Pak. J. Agric. Sci.
  • [9]Habib, N. and M. Zamin. 2003. Off-season pea cultivation in Dir Kohistan valley. Asian. J. Plant Sciences. 2: 283-285.
  • [10]Khokhar, M.K. 2014. Production status of major vegetables in Pakistan, their problems and suggestions. Agric. Corner. 9.
  • [11]Shah, B.H., F.S. Hamid, F. Ahmad, S. Aslam, and N. Khan. 2016. Evaluation of different pea (Pisum sativum L.) genotypes for yield and other attributes at Shinkiari, Mansehra. Pak. J. Agric. Sci. 29.
  • [12]Janzen, J., G. Brester, and V. Smith. 2014. Dry peas: trends in production. J Am. Stat. Assoc. 58: 236-244.
  • [13]Ton, A., T. Karaköy, A.E. Anlarsal and M. Türkeri. 2018. Investigation of grain yield and yield components of some field pea (Pisum sativum L.) genotypes in Mediterranean climate conditions. Legum. Res. An Int. J. 41.
  • [14]Parihar, A.K., G.P. Dixit, A. Bohra, D. Sen Gupta, A.K. Singh, N. Kumar, ... and N.P. Singh. 2020. Genetic Advancement in dry pea (Pisum sativum L.): retrospect and prospect. In Accelerated Plant Breeding, pp. 283-341. Springer, Cham.
  • [15]FAOSTAT 2023. Food and agriculture organization of united nations, statistics division. Available on line: https://www.fao.org/faostat/en/#search/Garden%20pea
  • [16]Fürst-Jansen, J. M., S. de Vries, and J. de Vries. 2020. Evo-physio: on stress responses and the earliest land plants. J. Exp. Bot. 71: 3254-3269.
  • [17]Kumar, M., M. Jeberson, N. Singh and R. Sharma. 2017. Genetic analysis of seed yield and its contributing traits and pattern of their inheritance in fieldpea (Pisum sativum L). Int. J. Curr. Microbiol. App. Sci. 6: 172-181.
  • [18]Kumar, R., M. Kumar, R. Dogra and N. Bharat. 2015. Variability and character association studies in garden pea (Pisum sativum var. hortense L.) during winter season at mid hills of Himachal Pradesh. Legum. Res. 38: 164-168.
  • [19]Celik, S. 2024a. Screening the Polyethylene Glycol 6000 Induced Upland Cotton (Gossypium hirsutum L.) Cultivars Drought Response at The Germination Stage. Uluslararası Gıda Tarım ve Hayvan Bilimleri Dergisi, 4(1), 1-9.
  • [20]Celik, S. (2024b). Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit. Türk Doğa ve Fen Dergisi, 13(1), 104-110.
  • [21]Çelik, S. (2024c). Gene expression analysis of potato drought-responsive genes under drought stress in potato (Solanum tuberosum L.) cultivars. PeerJ, 12, e17116.
  • [22]Çelik, S. (2020). Bazı upland pamuk (Gossypium hirsutum L.) çeşitlerinin çimlenme döneminde farklı tuz (NaCI) seviyelerine karşı toleranslarının belirlenmesi. Türk Doğa ve Fen Dergisi, 9(2), 112-117.
  • [23]Aidin, A., Celik, S., & Parlak, D. (2017). Determination Of The Salt Tolerance Characteristics Of Some Bread Wheat Cultivars. AgroLife Scientific Journal, 6(2).
  • [24]Çelik, S. (2023). Assessing drought tolerance in a large number of upland cotton plants (Gossypium hirsutum L.) under different irrigation regimes at the seedling stage. Life, 13(10), 2067.
  • [25]Lal, G., M. Meena, K. Chandra and C. Singh. 2011. Assessment of genetic variability and interrelation between yield and its contributing components in field pea (Pisum sativum L.). J. Environ. Prot. Ecol. 29: 1235-1239.
  • [26]Atlin, G. 2003. Improving drought tolerance by selecting for yield. Breeding rice for drought-prone environments. 14.
  • [27]Garima, T. and G.R. Lavanya. 2012. Genetic variability, character association and component analysis in F4 generation of fieldpea (Pisum sativum var. arvense L.). Karnataka J. Agri. Sci. 25: 173175.
  • [28]Yumkhaibam, T., C. Deo, M.D. Ramjan, N.B. Chanu and S. Semba. 2019. Estimation of genetic variability, heritability and geneticadvance for yield and its component traits ofgarden pea (Pisum sativum L.) in Northeast India. J. Pharmacogn. Phytochem. 8:4034-4039.
  • [29]Srivastava, A., A. Sharma, T. Singh, and R. Kumar. 2018. Correlation coefficient and path coefficient in field pea (Pisum sativum L.). Int. J. Curr. Microbiol. App. Sci. 7: 549-553.
  • [30]Moll, R., W.S. Salhuana, and H.F. Robinson. 1962. Heterosis and Genetic Diversity in Variety Crosses of Maize 1. Crop Sci. 2: 197-198.
  • [31]Lal, K., S. Kumar, A. Kumar, D. Prasad, A. Jaiswal, G. Mishra and S. Singh. 2019. Genetic Variability, Heritability and Genetic Advance Estimates for Various Quantitative Traits in Fieldpea (Pisum sativum L. var. arvense). Ind. J. Pure App. Biosci. 7: 356-361.
  • [32]Katoch, V., R. Rathour, S. Sharma, S.S. Rana and A. Sharma 2021. Studies on genetic parameters, correlation and path coefficient analysis in er2 introgressed garden pea genotypes. Leg. Res. Int. J.44(6), 621-626.
  • [33]Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1997. Principles and Procedures of Statistics: A biometrical approach (3rd ed.). McGraw- Hill, New York. Journal of BinBee-Apicultural and Natural Products, 2024, 4(2)
  • [34]Burton, G.W. 1952. Quantitative inheritance in grasses. Proc. 6th Int. Grassland cong, 1: 227-283.
  • [35]Burton GW, Devane EH. Estimating heritability in tall fescue (Festuca arundiancea) from replicated clonal material. Agron. J. 1953; 45:478-481.
  • [36]Johnson, H.W., H.F. Robinson, R.E. Comstock. 1955. Estimates of genetic and environmental variability in soybean. Agron. J. 47:314-318.
  • [37]Al-Jibouri, H.A., P.A. Millar, H.F. Robinson. 1958. Genotypic and environmental variances and covariances in an upland cotton cross of interspecific origin. Agron. J. 50: 632–636.
  • [38]Dewey, D.R. and K.H. Lu. 1959. A correlation and path coefficient analysis of components of crested Wheat grass and grain production. Agron. J. 52(3). 515-518
  • [39]Barcchiya, J., A.K. Naidu, A.K. Mehta, and A. Upadhyay. 2018. Genetic variability, heritability and genetic advance for yield and yield components in pea (Pisum sativum L.). Int. J. Chem. Stud. 6: 33243327.
  • [40]Aziz-ur-Rahman, V. K., R. Rathour, S. Sharma, S.S. Rana, A. Sharma. 2021. Studies on genetic parameters, correlation and path coefficient analysis in er2 introgressed garden pea genotypes. Legume Res. An Int J. 44: 621-626.
  • [41]Mahapatra, N. S., A. Das, P.K. Bhattacharyya, S. Bhattacharya, S. Pal, and S. Barpete. 2020. Studies on genetic variability, divergence and association of characters in grass pea. J. Crop Weed. 16: 155-161.
  • [42]Parihar, A. K., G.P. Dixit and D. Singh. 2015. Genetic variability analysis for quantitative traits in a germplasm set of grass pea (Lathyrus spp.). Legume Research, 38:461-464.
  • [43]Kumar, S., B. Ali, W. Ahmed, R. Islam, M.M. Rahman, M. Chakma, and M.S. Miah. 2022. Assessment of the genetic variability for various agronomic traits of pea (Pisum sativum L.) genotypes. Plant Archives, 22:87-94.
  • [44]Gudadinni, P., Bahadur, V., Ligade, P., Topno, S. E. and Prasad, V. M., 2017, Study on genetic variability, heritability and genetic advance in garden pea (Pisum sativum var. hortense L.). International Journal of Current Microbiology and Applied Sciences., 6(8): 2384-2391.
  • [45]Luthra, S., V. Bahadur and A. Kerketta. 2020. Study on genetic variability, heritability and genetic advance in garden pea (Pisum sativum var. hortense L.). J. Pharmacogn. Phytochem. 9: 2036-2039.
  • [46]Najeebullah, M., M. Iqbal, K. Nadeem, M. Iqbal, M.Z. Nabi, Z. Qadeer and U. Shahzad. 2020. Association pattern among yield and its related attributes for early peas (Pisum sativum L.).
  • [47]Georgieva N, Ivelina N, Valentin K. Evaluation of genetic divergence and heritability in pea (Pisum sativum L.). J BioSci. Biotechnol. 2016; 5(1):61-67.
  • [48]Pujari, P.K., J.L. Salam, A. Sao, N.C. Mandavi and D.P. Singh. 2021. Study of genetic variability in field pea (Pisum sativum L.). J. Pharmacogn. Phytochem, 10:1053-1055.
  • [49]Singh, S., V. Verma, B. Singh, V.R. Sharma and M. Kumar. 2019. Genetic variability, heritability and genetic advance studies in pea (Pisum sativum L.) for quantitative characters. Indian Journal of Agricultural Research, 53(5).
  • [50]Pandey, M., V.B. Singh, G.C. Yadav, N. Tyagi, G.S. Vishen, K.K. Bhargav and P. Pandey. 2017, Correlation and path coefficient analysis among different characters in genotypes of vegetable pea. Vegetable Science., 44: 139-141
  • [51]Katore, T.D. and P.A. Navale. 2018. Studies on genetic variability in pea (Pisum sativum L.). J. Genet., Genomics, Plant Breed., 2:1-3.
  • [52]Ullah, S., S. Batool, M. Mohibullah, J. Noreen, M. Khan, S. Ali and Amin. 2019. Studies on the variability parameters in pea. J. Genetics Genomics Plant Breed, 3: 17-22.
  • [53]Singh, V. K., Sharma, V., Paswan, S. K., Chaudhary, M., Sharma, B., & Chauhan, M. P. (2016). Study on genetic variability, heritability and genetic advance for yield and its contributing traits in linseed (Linum usitatissimum L.).
  • [54]Vasileva, V.; Kosev, V. 2015. Evaluation of nodule related components and forage productivity in Pea (Pisum sativum L.) genotypes. Int. J. Pharm. Life Sci. 6: 4230–4237.
  • [55]Naeem, M.; Awais Ghani, M.; Muhammad Atif, R.; Amjad, M.; Ahmad, T.; Batool, A.; Muzammil Jahangir, M.; Ali, B.; Mehran Abbas, M.; Nadeem Akram, M. 2020. Estimation of correlation and path coefficient for morphological and quality related traits in pea (Pisum sativum L.). Bangladesh J. Bot. 49: 549–555.
  • [56]Kumar, T. V., T. B. Alloli, H. P. Hadimani, P.S. Ajjappalavar, D. Satish, K. Abdul and C.N. Hanchinamani. 2019. Studies on Correlation and Path Coefficient Analysis in Garden Pea (Pisum sativum L.) varieties. Int. J. Curr. Microbiol. Appl. Sci. 8: 3024-3031.
  • [57]Uhlarik, A., Ćeran, M., Živanov, D., Grumeza, R., Skøt, L., Sizer-Coverdale, E., & Lloyd, D. 2022. Phenotypic and genotypic characterization and correlation analysis of pea (Pisum sativum L.) diversity panel. Plants, 11: 1321.
  • [58]Kumari, P., N. Basal, A.K. Singh, V.P. Rai, C.P. Srivastava, and P.K. Singh. 2013. Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers. Genet. Mol. Res. 12: 35403550.
  • [59]Zavinon, F., H. Adoukonou-Sagbadja, A. Bossikponnon, H. Dossa, and C. Ahanhanzo. 2019. Phenotypic diversity for agro-morphological traits in pigeon pea landraces [(Cajanus cajan L.) Millsp.] cultivated in southern Benin. Open Agric. 4: 487-499.
  • [60]Assen, K. Y. 2020. Diversity Analysis and Identification of Promising Powdery Mildew Resistance Genotypes in Field Pea (Pisum sativum L.). J. Agric. Biol. Environ. Stat. 6: 7-16.
  • [61]Bijalwan, P., A. Raturi, and A.C. Mishra. 2018. Genetic Divergence Analysis for Yield and Quality Traits in Garden Pea (Pisum sativum L.). Int. J. Bio-resour. stress Manag. 9: 83-86.
  • [62]Ramzan, A., T. Noor, T.N. Khan, and A. Hina, 2014. Correlation, cluster and regression analysis of seed yield and its contributing traits in pea (Pisum sativum L.). J. Agric. Res. 52: 481-488.

ASSESSMENT OF GENETIC DIVERSITY IN GARDEN PEA (Pisum sativum L.) GENOTYPES FOR VARIOUS QUANTITATIVE TRAITS

Yıl 2024, Cilt: 4 Sayı: 2, 18 - 32, 31.12.2024

Öz

Pea (Pisum sativum L.) a member of the Fabaceae family is one of the most significant pulse
crops due to its high nutritive values compared to other pulses. The yield potential of local varieties
is very low as compared to varieties of other countries. The present study was sown under a
randomized complete block design (RCBD) to explore the genetic variability of various
quantitative parameters in 30 genotypes of peas with three replications. Data were collected for
traits like days to first bloom, 50% flowering time, maturity, plant height (cm), distance between
the nodes (cm), total number of nodes per plant, total number of pods per plant, pod size (cm),
width of pods (cm), total number of seeds per pod, 100 seed weight (g) and yield per plant (g).
The results revealed that all the genotypes revealed substantial differences for the traits under
study. The estimates of broad sense heritability revealed that high heritability was observed
among all the attributes and the number of pods per plant exhibited maximum heritability. The
dendrogram constructed from the genotypic data grouped 30 genotypes into three major groups.
Cluster one was the largest sub-divided into two sub-clusters containing 13 genotypes followed
by cluster two includes 6 genotypes that are comparable to each other. The greatest inter-cluster
distance was found among clusters 2 and 3 (87.87). Correlation analysis revealed that the height
of the plant, nodes per plant, the width of the pod, number of pods per plant, pod size, number of
seeds per pod, and 100-seed weight showed positive and extremely significant association by
the yield per plant. Path coefficient analysis showed that 50% flowering time followed by pods per
plant exhibited a maximum positive effect on plant yield

Etik Beyan

yok

Destekleyen Kurum

yok

Teşekkür

yok

Kaynakça

  • [1]Jha, A.B., K.K. Gali, Z. Alam, V.B. Lachagari, and T.D. Warkentin. 2021. Potential application of genomic technologies in breeding for fungal and oomycete disease resistance in pea. Agron. 11: 1260.
  • [2]Gupta, A., B. Singh, M. Kumar and P. Chand. 2020. Studies on Genetic Variability, Heritability and Genetic Advance in Table Pea (Pisum sativum var. hotense L.). Int. J. Curr. Microbiol. App. Sci. 9: 34493454.
  • [3]Senapati, A.K., A.K. Varshney, and K.V. Sharma. 2019. Dehydration of green peas: A review. Int. J. Chem. Stud. 7: 1088-1091.
  • [4]Michaels, T.E. 2015. Grain legumes and their dietary impact: overview. The World of Food Grains, 265-273.
  • [5]Krefting, J. 2017. The appeal of pea protein. J. Ren Nutr. 27: 31-33.
  • [6]Rawal, V., R. Charrondiere, M. Xipsiti, and F. Grande. 2019. Pulses: nutritional benefits and consumption patterns. The Global Economy of Pulses, pp. 9-19.
  • [7]Tayeh, N., G. Aubert, M.L. Pilet-Nayel, I. Lejeune-Hénaut, T.D. Warkentin, and J. Burstin. 2015. Genomic tools in pea breeding programs: status and perspectives. Front. Plant Sci. 6: 1037.
  • [8]Nawab, N.N., G.M. Subhani, K. Mahmood, Q. Shakil, and A. Saeed 2008. Genetic variability, correlation and path analysis studies in garden pea (Pisum sativum L.). Pak. J. Agric. Sci.
  • [9]Habib, N. and M. Zamin. 2003. Off-season pea cultivation in Dir Kohistan valley. Asian. J. Plant Sciences. 2: 283-285.
  • [10]Khokhar, M.K. 2014. Production status of major vegetables in Pakistan, their problems and suggestions. Agric. Corner. 9.
  • [11]Shah, B.H., F.S. Hamid, F. Ahmad, S. Aslam, and N. Khan. 2016. Evaluation of different pea (Pisum sativum L.) genotypes for yield and other attributes at Shinkiari, Mansehra. Pak. J. Agric. Sci. 29.
  • [12]Janzen, J., G. Brester, and V. Smith. 2014. Dry peas: trends in production. J Am. Stat. Assoc. 58: 236-244.
  • [13]Ton, A., T. Karaköy, A.E. Anlarsal and M. Türkeri. 2018. Investigation of grain yield and yield components of some field pea (Pisum sativum L.) genotypes in Mediterranean climate conditions. Legum. Res. An Int. J. 41.
  • [14]Parihar, A.K., G.P. Dixit, A. Bohra, D. Sen Gupta, A.K. Singh, N. Kumar, ... and N.P. Singh. 2020. Genetic Advancement in dry pea (Pisum sativum L.): retrospect and prospect. In Accelerated Plant Breeding, pp. 283-341. Springer, Cham.
  • [15]FAOSTAT 2023. Food and agriculture organization of united nations, statistics division. Available on line: https://www.fao.org/faostat/en/#search/Garden%20pea
  • [16]Fürst-Jansen, J. M., S. de Vries, and J. de Vries. 2020. Evo-physio: on stress responses and the earliest land plants. J. Exp. Bot. 71: 3254-3269.
  • [17]Kumar, M., M. Jeberson, N. Singh and R. Sharma. 2017. Genetic analysis of seed yield and its contributing traits and pattern of their inheritance in fieldpea (Pisum sativum L). Int. J. Curr. Microbiol. App. Sci. 6: 172-181.
  • [18]Kumar, R., M. Kumar, R. Dogra and N. Bharat. 2015. Variability and character association studies in garden pea (Pisum sativum var. hortense L.) during winter season at mid hills of Himachal Pradesh. Legum. Res. 38: 164-168.
  • [19]Celik, S. 2024a. Screening the Polyethylene Glycol 6000 Induced Upland Cotton (Gossypium hirsutum L.) Cultivars Drought Response at The Germination Stage. Uluslararası Gıda Tarım ve Hayvan Bilimleri Dergisi, 4(1), 1-9.
  • [20]Celik, S. (2024b). Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit. Türk Doğa ve Fen Dergisi, 13(1), 104-110.
  • [21]Çelik, S. (2024c). Gene expression analysis of potato drought-responsive genes under drought stress in potato (Solanum tuberosum L.) cultivars. PeerJ, 12, e17116.
  • [22]Çelik, S. (2020). Bazı upland pamuk (Gossypium hirsutum L.) çeşitlerinin çimlenme döneminde farklı tuz (NaCI) seviyelerine karşı toleranslarının belirlenmesi. Türk Doğa ve Fen Dergisi, 9(2), 112-117.
  • [23]Aidin, A., Celik, S., & Parlak, D. (2017). Determination Of The Salt Tolerance Characteristics Of Some Bread Wheat Cultivars. AgroLife Scientific Journal, 6(2).
  • [24]Çelik, S. (2023). Assessing drought tolerance in a large number of upland cotton plants (Gossypium hirsutum L.) under different irrigation regimes at the seedling stage. Life, 13(10), 2067.
  • [25]Lal, G., M. Meena, K. Chandra and C. Singh. 2011. Assessment of genetic variability and interrelation between yield and its contributing components in field pea (Pisum sativum L.). J. Environ. Prot. Ecol. 29: 1235-1239.
  • [26]Atlin, G. 2003. Improving drought tolerance by selecting for yield. Breeding rice for drought-prone environments. 14.
  • [27]Garima, T. and G.R. Lavanya. 2012. Genetic variability, character association and component analysis in F4 generation of fieldpea (Pisum sativum var. arvense L.). Karnataka J. Agri. Sci. 25: 173175.
  • [28]Yumkhaibam, T., C. Deo, M.D. Ramjan, N.B. Chanu and S. Semba. 2019. Estimation of genetic variability, heritability and geneticadvance for yield and its component traits ofgarden pea (Pisum sativum L.) in Northeast India. J. Pharmacogn. Phytochem. 8:4034-4039.
  • [29]Srivastava, A., A. Sharma, T. Singh, and R. Kumar. 2018. Correlation coefficient and path coefficient in field pea (Pisum sativum L.). Int. J. Curr. Microbiol. App. Sci. 7: 549-553.
  • [30]Moll, R., W.S. Salhuana, and H.F. Robinson. 1962. Heterosis and Genetic Diversity in Variety Crosses of Maize 1. Crop Sci. 2: 197-198.
  • [31]Lal, K., S. Kumar, A. Kumar, D. Prasad, A. Jaiswal, G. Mishra and S. Singh. 2019. Genetic Variability, Heritability and Genetic Advance Estimates for Various Quantitative Traits in Fieldpea (Pisum sativum L. var. arvense). Ind. J. Pure App. Biosci. 7: 356-361.
  • [32]Katoch, V., R. Rathour, S. Sharma, S.S. Rana and A. Sharma 2021. Studies on genetic parameters, correlation and path coefficient analysis in er2 introgressed garden pea genotypes. Leg. Res. Int. J.44(6), 621-626.
  • [33]Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1997. Principles and Procedures of Statistics: A biometrical approach (3rd ed.). McGraw- Hill, New York. Journal of BinBee-Apicultural and Natural Products, 2024, 4(2)
  • [34]Burton, G.W. 1952. Quantitative inheritance in grasses. Proc. 6th Int. Grassland cong, 1: 227-283.
  • [35]Burton GW, Devane EH. Estimating heritability in tall fescue (Festuca arundiancea) from replicated clonal material. Agron. J. 1953; 45:478-481.
  • [36]Johnson, H.W., H.F. Robinson, R.E. Comstock. 1955. Estimates of genetic and environmental variability in soybean. Agron. J. 47:314-318.
  • [37]Al-Jibouri, H.A., P.A. Millar, H.F. Robinson. 1958. Genotypic and environmental variances and covariances in an upland cotton cross of interspecific origin. Agron. J. 50: 632–636.
  • [38]Dewey, D.R. and K.H. Lu. 1959. A correlation and path coefficient analysis of components of crested Wheat grass and grain production. Agron. J. 52(3). 515-518
  • [39]Barcchiya, J., A.K. Naidu, A.K. Mehta, and A. Upadhyay. 2018. Genetic variability, heritability and genetic advance for yield and yield components in pea (Pisum sativum L.). Int. J. Chem. Stud. 6: 33243327.
  • [40]Aziz-ur-Rahman, V. K., R. Rathour, S. Sharma, S.S. Rana, A. Sharma. 2021. Studies on genetic parameters, correlation and path coefficient analysis in er2 introgressed garden pea genotypes. Legume Res. An Int J. 44: 621-626.
  • [41]Mahapatra, N. S., A. Das, P.K. Bhattacharyya, S. Bhattacharya, S. Pal, and S. Barpete. 2020. Studies on genetic variability, divergence and association of characters in grass pea. J. Crop Weed. 16: 155-161.
  • [42]Parihar, A. K., G.P. Dixit and D. Singh. 2015. Genetic variability analysis for quantitative traits in a germplasm set of grass pea (Lathyrus spp.). Legume Research, 38:461-464.
  • [43]Kumar, S., B. Ali, W. Ahmed, R. Islam, M.M. Rahman, M. Chakma, and M.S. Miah. 2022. Assessment of the genetic variability for various agronomic traits of pea (Pisum sativum L.) genotypes. Plant Archives, 22:87-94.
  • [44]Gudadinni, P., Bahadur, V., Ligade, P., Topno, S. E. and Prasad, V. M., 2017, Study on genetic variability, heritability and genetic advance in garden pea (Pisum sativum var. hortense L.). International Journal of Current Microbiology and Applied Sciences., 6(8): 2384-2391.
  • [45]Luthra, S., V. Bahadur and A. Kerketta. 2020. Study on genetic variability, heritability and genetic advance in garden pea (Pisum sativum var. hortense L.). J. Pharmacogn. Phytochem. 9: 2036-2039.
  • [46]Najeebullah, M., M. Iqbal, K. Nadeem, M. Iqbal, M.Z. Nabi, Z. Qadeer and U. Shahzad. 2020. Association pattern among yield and its related attributes for early peas (Pisum sativum L.).
  • [47]Georgieva N, Ivelina N, Valentin K. Evaluation of genetic divergence and heritability in pea (Pisum sativum L.). J BioSci. Biotechnol. 2016; 5(1):61-67.
  • [48]Pujari, P.K., J.L. Salam, A. Sao, N.C. Mandavi and D.P. Singh. 2021. Study of genetic variability in field pea (Pisum sativum L.). J. Pharmacogn. Phytochem, 10:1053-1055.
  • [49]Singh, S., V. Verma, B. Singh, V.R. Sharma and M. Kumar. 2019. Genetic variability, heritability and genetic advance studies in pea (Pisum sativum L.) for quantitative characters. Indian Journal of Agricultural Research, 53(5).
  • [50]Pandey, M., V.B. Singh, G.C. Yadav, N. Tyagi, G.S. Vishen, K.K. Bhargav and P. Pandey. 2017, Correlation and path coefficient analysis among different characters in genotypes of vegetable pea. Vegetable Science., 44: 139-141
  • [51]Katore, T.D. and P.A. Navale. 2018. Studies on genetic variability in pea (Pisum sativum L.). J. Genet., Genomics, Plant Breed., 2:1-3.
  • [52]Ullah, S., S. Batool, M. Mohibullah, J. Noreen, M. Khan, S. Ali and Amin. 2019. Studies on the variability parameters in pea. J. Genetics Genomics Plant Breed, 3: 17-22.
  • [53]Singh, V. K., Sharma, V., Paswan, S. K., Chaudhary, M., Sharma, B., & Chauhan, M. P. (2016). Study on genetic variability, heritability and genetic advance for yield and its contributing traits in linseed (Linum usitatissimum L.).
  • [54]Vasileva, V.; Kosev, V. 2015. Evaluation of nodule related components and forage productivity in Pea (Pisum sativum L.) genotypes. Int. J. Pharm. Life Sci. 6: 4230–4237.
  • [55]Naeem, M.; Awais Ghani, M.; Muhammad Atif, R.; Amjad, M.; Ahmad, T.; Batool, A.; Muzammil Jahangir, M.; Ali, B.; Mehran Abbas, M.; Nadeem Akram, M. 2020. Estimation of correlation and path coefficient for morphological and quality related traits in pea (Pisum sativum L.). Bangladesh J. Bot. 49: 549–555.
  • [56]Kumar, T. V., T. B. Alloli, H. P. Hadimani, P.S. Ajjappalavar, D. Satish, K. Abdul and C.N. Hanchinamani. 2019. Studies on Correlation and Path Coefficient Analysis in Garden Pea (Pisum sativum L.) varieties. Int. J. Curr. Microbiol. Appl. Sci. 8: 3024-3031.
  • [57]Uhlarik, A., Ćeran, M., Živanov, D., Grumeza, R., Skøt, L., Sizer-Coverdale, E., & Lloyd, D. 2022. Phenotypic and genotypic characterization and correlation analysis of pea (Pisum sativum L.) diversity panel. Plants, 11: 1321.
  • [58]Kumari, P., N. Basal, A.K. Singh, V.P. Rai, C.P. Srivastava, and P.K. Singh. 2013. Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers. Genet. Mol. Res. 12: 35403550.
  • [59]Zavinon, F., H. Adoukonou-Sagbadja, A. Bossikponnon, H. Dossa, and C. Ahanhanzo. 2019. Phenotypic diversity for agro-morphological traits in pigeon pea landraces [(Cajanus cajan L.) Millsp.] cultivated in southern Benin. Open Agric. 4: 487-499.
  • [60]Assen, K. Y. 2020. Diversity Analysis and Identification of Promising Powdery Mildew Resistance Genotypes in Field Pea (Pisum sativum L.). J. Agric. Biol. Environ. Stat. 6: 7-16.
  • [61]Bijalwan, P., A. Raturi, and A.C. Mishra. 2018. Genetic Divergence Analysis for Yield and Quality Traits in Garden Pea (Pisum sativum L.). Int. J. Bio-resour. stress Manag. 9: 83-86.
  • [62]Ramzan, A., T. Noor, T.N. Khan, and A. Hina, 2014. Correlation, cluster and regression analysis of seed yield and its contributing traits in pea (Pisum sativum L.). J. Agric. Res. 52: 481-488.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polen Bilimi
Bölüm Assessment of Genetic Diversity in Garden Pea (Pisum sativum L.) Genotypes for Various Quantitative Traits
Yazarlar

Aqsa Mumtaz Bu kişi benim

Uzma Aslam Bu kişi benim

Abu Al Hussain Bu kişi benim

Amir Shakeel Bu kişi benim

Muhammad Abu Bakar Zia

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 22 Aralık 2024
Kabul Tarihi 27 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 2

Kaynak Göster

APA Mumtaz, A., Aslam, U., Al Hussain, A., … Shakeel, A. (2024). ASSESSMENT OF GENETIC DIVERSITY IN GARDEN PEA (Pisum sativum L.) GENOTYPES FOR VARIOUS QUANTITATIVE TRAITS. BinBee – Arı ve Doğal Ürünler Dergisi, 4(2), 18-32.