Araştırma Makalesi
BibTex RIS Kaynak Göster

Acibenzolar-S-methyl (BTH) içeren bir bitki aktivatörünün Cicadulina spp. Naudé (Hemiptera: Cicadellidae) üzerindeki repellent etkisinin belirlenmesi

Yıl 2021, Cilt: 14 Sayı: 2, 220 - 228, 15.08.2021
https://doi.org/10.46309/biodicon.2021.849569

Öz

Acibenzolar-S-methyl (BTH), bitkilerde zararlı böceklere karşı dayanıklılık veya savunmanın tetiklenmesinde ticari olarak kullanılan, yeni nesil etkili maddelerin ilk temsilcilerinden birisidir. BTH’ın zararlı böceklerin kontrolünde kullanımı hakkında yapılan çalışmalar sınırlı görünmektedir. Bu çalışmada, Dekalp mısır (Zea mays Linnaeus (Poales: Poaceae)) çeşidi, çevre dostu-bitkisel BTH içerikli bir bitki aktivatörü (BİON MX 44 WG) (% 4 Acibenzolar-S-methyl, suda dağılabilen granül) aracılı olarak oluşturulan ekstrakt ile yapraktan uygulanmıştır. Bu çalışmada uygulanan ekstraktın herbivor böcek, Cicadulina spp. Naudé (Hemiptera: Cicadellidae) üzerindeki repellent etkisinin araştırılması hedeflenmiştir. Çalışma, bu amaca uygun olarak tesadüf blokları deneme desenine göre 4 tekerrürlü olarak, 2017 ve 2018 yıllarında, Harran Üniversitesi Ziraat Fakültesi Osmanbey Kampüsü deneme alanında, mısır tarlalarında yürütülmüştür. Zararlı böcek Cicadulina spp. erginlerinin populasyon takibi her hafta yenilenen sarı yapışkan tuzaklar + göz + atrap aracılığıyla yapılmıştır. Buna göre, çalışmada yapılan değerlendirme sonucunda, her iki yılda da BTH içerikli bitki aktivatörü ile oluşturulan ekstrakt uygulamasının, kontrol uygulamaya göre istatistiki olarak önemli ölçüde daha az sayıda Cicadulina spp. ergin bireyleri çektiği tespit edilmiştir. Ayrıca, BTH muameleli yaprak örneklerinden GC-MS analizi sonucu elde edilen spesifik bir uçucu-aromatik maddenin, Cicadulina spp. üzerindeki repellent etki mekanizmasında rol alabileceği de belirlenmiştir.

Destekleyen Kurum

Harran Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

18163

Teşekkür

Bu çalışma Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi 18163 Nolu proje kapsamında gerçekleştirilmiştir.

Kaynakça

  • Araujo, L., Bispo, W. M. S., Rios, V. S., Fernandes, S. A., & Rodrigues, F. A. (2015). Induction of the phenylpropanoid pathway by acibenzolar-s-methyl and potassium phosphite increases mango resistance to Ceratocystis fimbriata infection. Plant Disease, 99, 447-459.
  • Bektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers Plant Science, 5(804).
  • Cavalcanti, F. R., Resende, M. L. V., Carvalho, C. P. S., Silveira, J. A. G., & Oliveira, J. T. A. (2007). An aqueous suspension of Crinipellis perniciosa mycelium activates tomato defence responses against Xanthomonas vesicatoria. Crop Protection, 26, 729-738.
  • Chen, M. S. (2008). Inducible direct plant defense against insect herbivores: A review. Insect science, 15(2), 101-114.
  • Choh, Y., Ozawa, R., & Takabayashi, J. (2004). Effects of exogenous jasmonic acid and benzo (1, 2, 3) thiadiazole-7-carbothioic acid S-methyl ester (BTH), a functional analogue of salicylic acid, on the egg production of a herbivorous mite Tetranychus urticae (Acari: Tetranychidae). Applied Entomology and Zoology, 39, 313–316.
  • Cooper, W. R., & Horton, D. R. (2017). Elicitors of host plant defenses partially suppress Cacopsylla pyricola (Hemiptera: Psyllidae) populations under field conditions. Journal of Insect Science, 17(2).
  • Derridj, S., & Borges, A. (2006). Apple tree resistance against an insect pest induced by an elicitor (ASM): Investigations by the analyses of the leaf surface metabolite on tree sites, IOBC workshop on methods in research on induced resistance. IOBC/WPRS Bulletin, 29(913).
  • Duman, E., & Altuntaş, H. (2018). Genotoxicity of azadirachtin on Galleria mellonella L. (Lepidoptera: Pyralidae). Biological Diversity and Conservation, 11(3), 24-30.
  • Feliziani, E., Landi, L., & Romanazzi, G. (2015). Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydrate Polymers, 132, 111-117.
  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.
  • Godfray, H. C. J., Beddington, J. R., Crute, L. R., Haddad, L., Lawrence, D., Muir, J. F., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.
  • Gregory, P. J., & George, T. S. (2011). Feeding nine billion: The challenge to sustainable crop production. Journal of Experimental Botany, 62, 5233–5239.
  • Karban, R., & Baldwin, I. T. (1997). Induced responses to herbivory. Chicago, USA: Chicago University Press.
  • Li, X., Bi, Y., Wang, J. J., Dong, B., Li, H., Gong, D., & Shang, Q. (2015b). BTH treatment caused physiological: Biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. Journal of Proteomics, 120, 179-193.
  • Meller Harel, Y., Haile Mehari, Z., Rav-David, D., & Elad, Y. (2014). Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology, 104, 150–157.
  • Meteorolojik veriler. (2018). Tarım ve Orman Bakanlığı, Meteoroloji Genel Müdürlüğü.
  • Mewis, I., Appel, H. M., Hom, A., Raina, R., & Schultz, J. C. (2005). Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem‐feeding and chewing insects. Plant Physiology, 138, 1149-1162.
  • Muñiz, M., & Nombela, G. (2009). Research on tomato resistance to the virus-transmitter whitefly Bemisia tabaci undertaken during the last years in Madrid (Spain). Acta Horticulturae, 808, 175-181.
  • Neto, A. C. R., Maraschin, M., & DiPiero, R. M. (2015). Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. International Journal of Food Microbiology, 215(215), 64-70.
  • Pradhanang, P. M., Ji, P., Momol, M. T., Olson, S. M., Mayfield, J. L., & Jones, J. B. (2005). Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Disease, 89, 989-993.
  • Quaglia, M., Ederli, L., Pasqualini, S., & Zazzerini, A. (2011). Biological control agentes and chemicas induceres of resistance for postharvest control of Penicillium expansum on apple fruit. Postharvest Biology and Technology, 59(3), 307-315.
  • Rohilla, R., Singh, U. S., & Singh, R. L. (2001). Mode of action of acibenzolar S-methyl against sheath blight of rice caused by Rhizoctonia solani Kuhn. Pest Management Science, 58, 63–69.
  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. Plant and Cell Physiology, 37, 762-769.
  • Sabelis, M. W., Jannssen, A., & Kant, M. R. (2001). Ecology: The enemy of my enemy is my ally. Science, 291, 2104-2105.
  • Schouteden, N., Lemmens, E., Stuer, N., Curtis, R., Panis, B., & Waele, D. D. (2017). Direct nematicidal effects of methyl jasmonate and acibenzolar-S-methyl against Meloidogyne incognita. Natural Product Research, 31(10), 1219-1222.
  • Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12, 89–100.
  • Stadnik, M. J., & Buchenauer, H. (1999). Accumulation of autofluorogenic compounds at the penetration site of Blumeria graminis f. sp. tritici is associated with both benzothiadiazole induced and quantitative resistance in wheat. Journal of Phytopathology, 147, 615-622.
  • Sticher, L., Mauchmani, B., & Metraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235-270.
  • Stiller, M. (2009). Biosystematics: Leafhoppers associated with grasslands of South Africa–Grassland Biome endemics. Plant Protection, News, 82(6).
  • Tomlin, C. D. S. (2001). The pesticide manual. London: UK: British Crop Protection Council Press.
  • Tripathi, D., & Pappu, H. R. (2015). Evaluation of acibenzolar-S-methyl-induced resistance against iris yellow spot tospovirus. European Journal of Plant Pathology, 142(4), 855–864.
  • Venâncio, W. S., Zagonel, J., Furtado, E. L, Souza, N. L., & Peres, N. A. R. P. (2000). Novos fungicidas, II-famoxadone e indutores de resistência. Revisão Anual de Patologia de Plantas, 8, 59-92.
  • Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64, 1263–1280.
  • Warneys, R., Gaucher, M., Robert, P., Aligon, S., Anton, S., Aubourg, S., & Degrave, A. (2018). Acibenzolar-s-methyl reprograms apple transcriptome toward resistance to rosy apple aphid. Frontiers Plant Science, 9(1795).
  • Yıldırım, E. (2008). Tarımsal zararlılarla mücadele yöntemleri ve kullanılan ilaçlar. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, 219(350) .

Determination of repellent effect of a plant activator containing acibenzolar-s-methyl (BTH) on Cicadulina spp. Naudé (Hemiptera: Cicadellidae)

Yıl 2021, Cilt: 14 Sayı: 2, 220 - 228, 15.08.2021
https://doi.org/10.46309/biodicon.2021.849569

Öz

Acibenzolar-S-methyl (BTH) is one of the first representatives of a new generation of effective substances that are commercially used to induce resistance or defense against pests in plants. Studies on the use of BTH in the control of pests seem limited. In this study, Dekalp corn (Zea mays Linnaeus (Poales: Poaceae)) variety was applied foliar with an extract produced by an environmentally friendly-botanical plant activator (BİON MX 44 WG) (% 4 Acibenzolar-S-methyl, water dispersible granule) which contained BTH. This study is aimed to investigate the repellent effects of the applied extract on the herbivorous insect Cicadulina spp. Naudé (Hemiptera: Cicadellidae). The study was conducted in 2017 and 2018, with 4 repetitions, according to the randomized blocks trial design, in line with this purpose also the study was carried out in the experimental area of Harran University Faculty of Agriculture Osmanbey Campus in the corn fields. The population tracking of pest Cicadulina spp. adults was done by yellow sticky traps, atrap, and by eyes every week. Accordingly, as a result of the evaluation made in the study, in both years, it was determined that the extract application formed with plant activator which containing BTH attracted statistically significantly fewer Cicadulina spp. adults than the control application. In addition, a specific volatile-aromatic substance obtained from BTH treated leaf samples as a result of GC-MS analysis, has also been determined that it may play a role in the repellent effect mechanism on Cicadulina spp.

Proje Numarası

18163

Kaynakça

  • Araujo, L., Bispo, W. M. S., Rios, V. S., Fernandes, S. A., & Rodrigues, F. A. (2015). Induction of the phenylpropanoid pathway by acibenzolar-s-methyl and potassium phosphite increases mango resistance to Ceratocystis fimbriata infection. Plant Disease, 99, 447-459.
  • Bektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers Plant Science, 5(804).
  • Cavalcanti, F. R., Resende, M. L. V., Carvalho, C. P. S., Silveira, J. A. G., & Oliveira, J. T. A. (2007). An aqueous suspension of Crinipellis perniciosa mycelium activates tomato defence responses against Xanthomonas vesicatoria. Crop Protection, 26, 729-738.
  • Chen, M. S. (2008). Inducible direct plant defense against insect herbivores: A review. Insect science, 15(2), 101-114.
  • Choh, Y., Ozawa, R., & Takabayashi, J. (2004). Effects of exogenous jasmonic acid and benzo (1, 2, 3) thiadiazole-7-carbothioic acid S-methyl ester (BTH), a functional analogue of salicylic acid, on the egg production of a herbivorous mite Tetranychus urticae (Acari: Tetranychidae). Applied Entomology and Zoology, 39, 313–316.
  • Cooper, W. R., & Horton, D. R. (2017). Elicitors of host plant defenses partially suppress Cacopsylla pyricola (Hemiptera: Psyllidae) populations under field conditions. Journal of Insect Science, 17(2).
  • Derridj, S., & Borges, A. (2006). Apple tree resistance against an insect pest induced by an elicitor (ASM): Investigations by the analyses of the leaf surface metabolite on tree sites, IOBC workshop on methods in research on induced resistance. IOBC/WPRS Bulletin, 29(913).
  • Duman, E., & Altuntaş, H. (2018). Genotoxicity of azadirachtin on Galleria mellonella L. (Lepidoptera: Pyralidae). Biological Diversity and Conservation, 11(3), 24-30.
  • Feliziani, E., Landi, L., & Romanazzi, G. (2015). Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydrate Polymers, 132, 111-117.
  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.
  • Godfray, H. C. J., Beddington, J. R., Crute, L. R., Haddad, L., Lawrence, D., Muir, J. F., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.
  • Gregory, P. J., & George, T. S. (2011). Feeding nine billion: The challenge to sustainable crop production. Journal of Experimental Botany, 62, 5233–5239.
  • Karban, R., & Baldwin, I. T. (1997). Induced responses to herbivory. Chicago, USA: Chicago University Press.
  • Li, X., Bi, Y., Wang, J. J., Dong, B., Li, H., Gong, D., & Shang, Q. (2015b). BTH treatment caused physiological: Biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. Journal of Proteomics, 120, 179-193.
  • Meller Harel, Y., Haile Mehari, Z., Rav-David, D., & Elad, Y. (2014). Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology, 104, 150–157.
  • Meteorolojik veriler. (2018). Tarım ve Orman Bakanlığı, Meteoroloji Genel Müdürlüğü.
  • Mewis, I., Appel, H. M., Hom, A., Raina, R., & Schultz, J. C. (2005). Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem‐feeding and chewing insects. Plant Physiology, 138, 1149-1162.
  • Muñiz, M., & Nombela, G. (2009). Research on tomato resistance to the virus-transmitter whitefly Bemisia tabaci undertaken during the last years in Madrid (Spain). Acta Horticulturae, 808, 175-181.
  • Neto, A. C. R., Maraschin, M., & DiPiero, R. M. (2015). Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. International Journal of Food Microbiology, 215(215), 64-70.
  • Pradhanang, P. M., Ji, P., Momol, M. T., Olson, S. M., Mayfield, J. L., & Jones, J. B. (2005). Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Disease, 89, 989-993.
  • Quaglia, M., Ederli, L., Pasqualini, S., & Zazzerini, A. (2011). Biological control agentes and chemicas induceres of resistance for postharvest control of Penicillium expansum on apple fruit. Postharvest Biology and Technology, 59(3), 307-315.
  • Rohilla, R., Singh, U. S., & Singh, R. L. (2001). Mode of action of acibenzolar S-methyl against sheath blight of rice caused by Rhizoctonia solani Kuhn. Pest Management Science, 58, 63–69.
  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. Plant and Cell Physiology, 37, 762-769.
  • Sabelis, M. W., Jannssen, A., & Kant, M. R. (2001). Ecology: The enemy of my enemy is my ally. Science, 291, 2104-2105.
  • Schouteden, N., Lemmens, E., Stuer, N., Curtis, R., Panis, B., & Waele, D. D. (2017). Direct nematicidal effects of methyl jasmonate and acibenzolar-S-methyl against Meloidogyne incognita. Natural Product Research, 31(10), 1219-1222.
  • Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12, 89–100.
  • Stadnik, M. J., & Buchenauer, H. (1999). Accumulation of autofluorogenic compounds at the penetration site of Blumeria graminis f. sp. tritici is associated with both benzothiadiazole induced and quantitative resistance in wheat. Journal of Phytopathology, 147, 615-622.
  • Sticher, L., Mauchmani, B., & Metraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235-270.
  • Stiller, M. (2009). Biosystematics: Leafhoppers associated with grasslands of South Africa–Grassland Biome endemics. Plant Protection, News, 82(6).
  • Tomlin, C. D. S. (2001). The pesticide manual. London: UK: British Crop Protection Council Press.
  • Tripathi, D., & Pappu, H. R. (2015). Evaluation of acibenzolar-S-methyl-induced resistance against iris yellow spot tospovirus. European Journal of Plant Pathology, 142(4), 855–864.
  • Venâncio, W. S., Zagonel, J., Furtado, E. L, Souza, N. L., & Peres, N. A. R. P. (2000). Novos fungicidas, II-famoxadone e indutores de resistência. Revisão Anual de Patologia de Plantas, 8, 59-92.
  • Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64, 1263–1280.
  • Warneys, R., Gaucher, M., Robert, P., Aligon, S., Anton, S., Aubourg, S., & Degrave, A. (2018). Acibenzolar-s-methyl reprograms apple transcriptome toward resistance to rosy apple aphid. Frontiers Plant Science, 9(1795).
  • Yıldırım, E. (2008). Tarımsal zararlılarla mücadele yöntemleri ve kullanılan ilaçlar. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, 219(350) .
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Research Article
Yazarlar

Sultan Çoban 0000-0002-5596-5657

Emine Çıkman 0000-0003-4375-5043

Proje Numarası 18163
Yayımlanma Tarihi 15 Ağustos 2021
Gönderilme Tarihi 29 Aralık 2020
Kabul Tarihi 3 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 14 Sayı: 2

Kaynak Göster

APA Çoban, S., & Çıkman, E. (2021). Acibenzolar-S-methyl (BTH) içeren bir bitki aktivatörünün Cicadulina spp. Naudé (Hemiptera: Cicadellidae) üzerindeki repellent etkisinin belirlenmesi. Biological Diversity and Conservation, 14(2), 220-228. https://doi.org/10.46309/biodicon.2021.849569

18385183861838718388183892276122760