Development of PLGA wound dressing containing silver nanoparticles synthesized from licorice extract
Year 2025,
Volume: 34 Issue: SI, 66 - 72, 21.08.2025
Ayse Malbora
,
Mehmet Emin Senol
,
Busranur Senol
,
Zehra Gul Morcimen
Abstract
Nanofiber wound dressings are developed using various polymers and adding different active agents to the polymers during the production phase. In this study, PLGA, PLGA containing silver nanoparticles (AgNP/PLGA), PLGA nanofibers containing 1%, 2%, 3% licorice root, and silver nanoparticle doped (LR-AgNP/PLGA) were produced by electrospinning method. The green synthesis method was used to produce licorice-containing silver nanoparticles (LR-AgNP). The morphological analysis of nanofibers was determined using diameter measurements on SEM images. The average fiber diameters of PLGA, AgNP/PLGA, and LR-AgNP/PLGA nanofibers are 344 nm, 260 nm, and 357 nm, respectively. FTIR analysis was used for the determination of chemical bonds. The FTIR graph of PLGA, AgNP/PLGA and LR-AgNP/PLGA nanofibers showed similar peaks in the 3008-2883 cm-1, 1500-1412 cm-1, 1181-1086 cm-1 and 1755-1750 cm-1 bands. The wound healing potential of the produced nanofibers was evaluated on an in vitro wound scratch model. According to the results obtained, LR-AgNP/PLGA nanofibers showed the fastest wound closure. As a result of these studies, it was determined that PLGA nanofibers with silver nanoparticles containing licorice root extract could accelerate the wound healing process.
Supporting Institution
This study is the master's thesis of Mehmet Emin Şenol under the supervision of Assoc. Prof. Dr. Ayşe Malbora and was financially supported by Ege University Scientific Research Coordinatorship (BAP) under the project number FM-YLT-2022-75588. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. *Ege University Scientific Research Coordinatorship (BAP): https://bap.ege.edu.tr/
Project Number
FM-YLT-2022-75588
Thanks
We are grateful to Assoc. Prof. Dr. Aylin Şendemir and her team for their support in carrying out this study and for making all the equipment in their laboratory available to us. This work was supported by The Scientific Research Foundation of Ege University (Project number: FM-YLT-2022-75588).
References
-
Chan, L. S. and Shi, V. Y. (Eds.). (2022). Atopic Dermatitis: Inside Out or Outside In-E-Book, Elsevier Health Sciences.
-
Chen, F., Han, J., Guo, Z., Mu, C., Yu, C., Ji, Z., S, Lei., Wang, Y., & Wang, J. (2023). Antibacterial 3D-printed silver nanoparticle/poly lactic-co-glycolic acid (PLGA) scaffolds for bone tissue engineering. Materials, 16(11), 3895. https://doi.org/10.3390/ma16113895
-
Chook, S. W., Chia, C. H., Zakaria, S., Ayob, M. K., Chee, K. L., Huang, N. M., Neoh, H. M., Lim, H. N., Jamal, R., & Rahman, R. (2012). Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale research letters, 7, 1-7.
-
Damle, M. (2014). Glycyrrhiza glabra (liquorice)-A potent medicinal herb. International Journal of Herbal Medicine
-
Dong, R. and Guo, B. (2021). Smart wound dressings for wound healing. Nano Today, 41, 101290. https://doi.org/10.1016/j.nantod.2021.101290
-
Dowsett, C. (2004). The use of silver-based dressings in wound care. Nursing Standard (through 2013), 19(7), 56. https://doi.org/10.7748/ns2004.10.19.7.56.c3736
-
Gora, A., Prabhakaran, M. P., Eunice, G. T. L., Lakshminarayanan, R. and Ramakrishna, S. (2015). Silver nanoparticle incorporated poly (l‐lactide‐co‐glycolide) nanofibers: Evaluation of their biocompatibility and antibacterial properties. Journal of Applied Polymer Science, 132(42). https://doi.org/10.1002/app.42686
-
Ker-Woon, C., Abd Ghafar, N., Hui, C. K., Yusof, Y. A. M. and Ngah, W. Z. W. (2015). The effects of acacia honey on in vitro corneal abrasion wound healing model. BMC Cell Biology, 16(1): 2.
https://doi.org/10.1186/s12860-015-0053-9
-
Khan, F., Aldhahri, M., Hussain, M. A., Gauthaman, K., Memic, A., Abuzenadah, A., Kumosani, T., Barbour, E., Alothmany, N.S., and Aldhaheri, R. W. (2018). Encapsulation of 5-flurouracil into PLGA nanofibers and enhanced anticancer effect in combination with Ajwa-dates-extract (Phoenix dactylifera L.). Journal of Biomedical Nanotechnology, 14(3), 553-563.
https://doi.org/10.1166/jbn.2018.2515
-
Kumar, G., Khan, F. G., Abro, M. I., Aftab, U., & Jatoi, A. W. (2023). Development of cellulose acetate/CuO/AgNP nanofibers based effective antimicrobial wound dressing. Composites Communications, 39, 101550. https://doi.org/10.1016/j.coco.2023.101550
-
Lateef, M., Iqbal, L., Fatima, N., Siddiqui, K., Afza, N., Zia-ul-Haq, M. and Ahmad, M. (2012). Evaluation of antioxidant and urease inhibition activities of roots of Glycyrrhiza glabra, Pak J Pharm Sci, 25(1), 99-102.
-
Liang, Y., He, J. and Guo, B. (2021). Functional hydrogels as wound dressing to enhance wound healing. ACS nano, 15(8), 12687-12722. https://doi.org/10.1021/acsnano.1c04206
-
Liu, Y., Chen, X., Liu, Y., Gao, Y. and Liu, P. (2022). Electrospun coaxial fibers to optimize the release of poorly water-soluble drug. Polymers, 14(3), 469. https://doi.org/10.3390/polym14030469
-
Martinotti, S. and Ranzato, E. (2019). Scratch wound healing assay. Methods in Molecular Biology, 2109: 225-229p
-
Mohanpuria, P., Rana, N. K. and Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of nanoparticle research, 10, 507-517.
-
Muddineti, O. S., & Omri, A. (2022). Current trends in PLGA based long-acting injectable products: The industry perspective. Expert Opinion on Drug Delivery, 19(5), 559-576.
https://doi.org/10.1080/17425247.2022.2075845
-
Nephew, S. (2003). Dynamic silver release rapid destruction, sustained protection, Acticoat with silver cryst. Smith and Nephew Pty. Ltd. Product Information.
-
Öktemer, F. A., & Avcı, A. (2021). Plga elektrospun nanofiber wound dressing with curcumin and silver nanoparticles, Master Thesis, Necmettin Erbakan University, Konya.
-
Pal, S., Nisi, R., Stoppa, M. and Licciulli, A. (2017). Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega, 2(7), 3632-3639.
https://doi.org/10.1021/acsomega.7b00442
-
Reinke, J. M. and Sorg, H. (2012). Wound repair and regeneration. European Surgical Research, 49(1), 35-43. https://doi.org/10.1159/000339613
-
Roy, I., Magesh, K. T., Sathyakumar, M., Sivachandran, A., Purushothaman, D. and Aravindhan, R. (2023). Evaluation of wound healing property of the ethanolic extract of glycyrrhiza glabra on vero cell lines using in vitro scratch assay test. Journal of Pharmacy and Bioallied Sciences, 15(Suppl 1), 630-635pp. https://doi.org/10.4103/jpbs.jpbs_61_23
-
Schoeller, J., Itel, F., Wuertz-Kozak, K., Gaiser, S., Luisier, N., Hegemann, D., Ferguson, S. J., Fortunato, G. and Rossi, R. M. (2021). pH-responsive chitosan/alginate polyelectrolyte complexes on electrospun PLGA nanofibers for controlled drug release, Nanomaterials, 11(7), 1850. https://doi.org/10.3390/nano11071850
-
Sedighinia, F., Afshar, A. S., Asili, J., & Ghazvini, K. (2012). Antibacterial activity of Glycyrrhiza glabra against oral pathogens: an in vitro study. Avicenna journal of phytomedicine, 2(3), 118.
Seyhan, S. A. (2019) Re-evaluation of DPPH antioxidant analysis, Batman University Journal of Life Sciences, 9(2), 125-135. https://doi.org/10.1016/B978-0-323-91883-1.00011-5
-
Shahid, M. A., Khan, M. S., & Hasan, M. M. (2022). Licorice extract-infused electrospun nanofiber scaffold for wound healing. OpenNano, 8, 100075. https://doi.org/10.1016/j.onano.2022.100075
-
Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E. A., Ibrahim, N. A., Shabanzadeh, P., Rustaiyan, A., Abdollahi, Y., Bagheri, S., Abdolmohammadi, S., Usnam, S. M., & Zidan, M. (2012). Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 17(7), 8506-8517. https://doi.org/10.3390/molecules17078506
-
Shedoeva, A., Leavesley, D., Upton, Z. and Fan, C. (2019). Wound healing and the use of medicinal plants. Evidence-Based Complementary and Alternative Medicine.
https://doi.org/10.1155/2019/2684108
-
Siriwattanasatorn, M., Itharat, A., Thongdeeying, P. and Ooraikul, B. (2020). In vitro wound healing activities of three most commonly used thai medicinal plants and their three markers. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2020/6795383
-
Stacey, G. (2001). Primary cell cultures and immortal cell lines, Encyclopedia of Life Sciences.
-
Tohma, H. S., & Gulçin, I. (2010). Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). International Journal of Food Properties, 13(4), 657-671. https://doi.org/10.1080/10942911003773916
-
Varsha, S., Agrawal, R. C., & Sonam, P. (2013). Phytochemical screening and determination of anti-bacterial and anti-oxidant potential of Glycyrrhiza glabra root extracts. Journal of environmental Research and Development, 7(4A), 1552.
-
Zabihi, M., Hatefi, B., Ardakani, M. E., Ranjbar, A. M., & Mohammadi, F. (2023). Impact of licorice root on the burn healing process: a double-blinded randomized controlled clinical trial. Complementary Therapies in Medicine, 73, 102941. https://doi.org/10.1016/j.ctim.2023.102941
-
Zeng, Q., Qi, X., Shi, G., Zhang, M. and Haick, H. (2022). Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano, 16(2), 1708-1733.
https://doi.org/10.1021/acsnano.1c08411
-
Zhao, W., Li, J., Jin, K., Liu, W., Qiu, X. and Li, C. (2016). Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Materials Science and Engineering: C, 59, 1181-1194. https://doi.org/10.1016/j.msec.2015.11.026
-
Zhou, Y., Liu, Y., Zhang, M., Feng, Z., Yu, D. G. and Wang, K. (2022). Electrospun nanofiber membranes for air filtration: A review. Nanomaterials, 12(7), 1077. https://doi.org/10.3390/nano12071077
Year 2025,
Volume: 34 Issue: SI, 66 - 72, 21.08.2025
Ayse Malbora
,
Mehmet Emin Senol
,
Busranur Senol
,
Zehra Gul Morcimen
Project Number
FM-YLT-2022-75588
References
-
Chan, L. S. and Shi, V. Y. (Eds.). (2022). Atopic Dermatitis: Inside Out or Outside In-E-Book, Elsevier Health Sciences.
-
Chen, F., Han, J., Guo, Z., Mu, C., Yu, C., Ji, Z., S, Lei., Wang, Y., & Wang, J. (2023). Antibacterial 3D-printed silver nanoparticle/poly lactic-co-glycolic acid (PLGA) scaffolds for bone tissue engineering. Materials, 16(11), 3895. https://doi.org/10.3390/ma16113895
-
Chook, S. W., Chia, C. H., Zakaria, S., Ayob, M. K., Chee, K. L., Huang, N. M., Neoh, H. M., Lim, H. N., Jamal, R., & Rahman, R. (2012). Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale research letters, 7, 1-7.
-
Damle, M. (2014). Glycyrrhiza glabra (liquorice)-A potent medicinal herb. International Journal of Herbal Medicine
-
Dong, R. and Guo, B. (2021). Smart wound dressings for wound healing. Nano Today, 41, 101290. https://doi.org/10.1016/j.nantod.2021.101290
-
Dowsett, C. (2004). The use of silver-based dressings in wound care. Nursing Standard (through 2013), 19(7), 56. https://doi.org/10.7748/ns2004.10.19.7.56.c3736
-
Gora, A., Prabhakaran, M. P., Eunice, G. T. L., Lakshminarayanan, R. and Ramakrishna, S. (2015). Silver nanoparticle incorporated poly (l‐lactide‐co‐glycolide) nanofibers: Evaluation of their biocompatibility and antibacterial properties. Journal of Applied Polymer Science, 132(42). https://doi.org/10.1002/app.42686
-
Ker-Woon, C., Abd Ghafar, N., Hui, C. K., Yusof, Y. A. M. and Ngah, W. Z. W. (2015). The effects of acacia honey on in vitro corneal abrasion wound healing model. BMC Cell Biology, 16(1): 2.
https://doi.org/10.1186/s12860-015-0053-9
-
Khan, F., Aldhahri, M., Hussain, M. A., Gauthaman, K., Memic, A., Abuzenadah, A., Kumosani, T., Barbour, E., Alothmany, N.S., and Aldhaheri, R. W. (2018). Encapsulation of 5-flurouracil into PLGA nanofibers and enhanced anticancer effect in combination with Ajwa-dates-extract (Phoenix dactylifera L.). Journal of Biomedical Nanotechnology, 14(3), 553-563.
https://doi.org/10.1166/jbn.2018.2515
-
Kumar, G., Khan, F. G., Abro, M. I., Aftab, U., & Jatoi, A. W. (2023). Development of cellulose acetate/CuO/AgNP nanofibers based effective antimicrobial wound dressing. Composites Communications, 39, 101550. https://doi.org/10.1016/j.coco.2023.101550
-
Lateef, M., Iqbal, L., Fatima, N., Siddiqui, K., Afza, N., Zia-ul-Haq, M. and Ahmad, M. (2012). Evaluation of antioxidant and urease inhibition activities of roots of Glycyrrhiza glabra, Pak J Pharm Sci, 25(1), 99-102.
-
Liang, Y., He, J. and Guo, B. (2021). Functional hydrogels as wound dressing to enhance wound healing. ACS nano, 15(8), 12687-12722. https://doi.org/10.1021/acsnano.1c04206
-
Liu, Y., Chen, X., Liu, Y., Gao, Y. and Liu, P. (2022). Electrospun coaxial fibers to optimize the release of poorly water-soluble drug. Polymers, 14(3), 469. https://doi.org/10.3390/polym14030469
-
Martinotti, S. and Ranzato, E. (2019). Scratch wound healing assay. Methods in Molecular Biology, 2109: 225-229p
-
Mohanpuria, P., Rana, N. K. and Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of nanoparticle research, 10, 507-517.
-
Muddineti, O. S., & Omri, A. (2022). Current trends in PLGA based long-acting injectable products: The industry perspective. Expert Opinion on Drug Delivery, 19(5), 559-576.
https://doi.org/10.1080/17425247.2022.2075845
-
Nephew, S. (2003). Dynamic silver release rapid destruction, sustained protection, Acticoat with silver cryst. Smith and Nephew Pty. Ltd. Product Information.
-
Öktemer, F. A., & Avcı, A. (2021). Plga elektrospun nanofiber wound dressing with curcumin and silver nanoparticles, Master Thesis, Necmettin Erbakan University, Konya.
-
Pal, S., Nisi, R., Stoppa, M. and Licciulli, A. (2017). Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega, 2(7), 3632-3639.
https://doi.org/10.1021/acsomega.7b00442
-
Reinke, J. M. and Sorg, H. (2012). Wound repair and regeneration. European Surgical Research, 49(1), 35-43. https://doi.org/10.1159/000339613
-
Roy, I., Magesh, K. T., Sathyakumar, M., Sivachandran, A., Purushothaman, D. and Aravindhan, R. (2023). Evaluation of wound healing property of the ethanolic extract of glycyrrhiza glabra on vero cell lines using in vitro scratch assay test. Journal of Pharmacy and Bioallied Sciences, 15(Suppl 1), 630-635pp. https://doi.org/10.4103/jpbs.jpbs_61_23
-
Schoeller, J., Itel, F., Wuertz-Kozak, K., Gaiser, S., Luisier, N., Hegemann, D., Ferguson, S. J., Fortunato, G. and Rossi, R. M. (2021). pH-responsive chitosan/alginate polyelectrolyte complexes on electrospun PLGA nanofibers for controlled drug release, Nanomaterials, 11(7), 1850. https://doi.org/10.3390/nano11071850
-
Sedighinia, F., Afshar, A. S., Asili, J., & Ghazvini, K. (2012). Antibacterial activity of Glycyrrhiza glabra against oral pathogens: an in vitro study. Avicenna journal of phytomedicine, 2(3), 118.
Seyhan, S. A. (2019) Re-evaluation of DPPH antioxidant analysis, Batman University Journal of Life Sciences, 9(2), 125-135. https://doi.org/10.1016/B978-0-323-91883-1.00011-5
-
Shahid, M. A., Khan, M. S., & Hasan, M. M. (2022). Licorice extract-infused electrospun nanofiber scaffold for wound healing. OpenNano, 8, 100075. https://doi.org/10.1016/j.onano.2022.100075
-
Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E. A., Ibrahim, N. A., Shabanzadeh, P., Rustaiyan, A., Abdollahi, Y., Bagheri, S., Abdolmohammadi, S., Usnam, S. M., & Zidan, M. (2012). Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 17(7), 8506-8517. https://doi.org/10.3390/molecules17078506
-
Shedoeva, A., Leavesley, D., Upton, Z. and Fan, C. (2019). Wound healing and the use of medicinal plants. Evidence-Based Complementary and Alternative Medicine.
https://doi.org/10.1155/2019/2684108
-
Siriwattanasatorn, M., Itharat, A., Thongdeeying, P. and Ooraikul, B. (2020). In vitro wound healing activities of three most commonly used thai medicinal plants and their three markers. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2020/6795383
-
Stacey, G. (2001). Primary cell cultures and immortal cell lines, Encyclopedia of Life Sciences.
-
Tohma, H. S., & Gulçin, I. (2010). Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). International Journal of Food Properties, 13(4), 657-671. https://doi.org/10.1080/10942911003773916
-
Varsha, S., Agrawal, R. C., & Sonam, P. (2013). Phytochemical screening and determination of anti-bacterial and anti-oxidant potential of Glycyrrhiza glabra root extracts. Journal of environmental Research and Development, 7(4A), 1552.
-
Zabihi, M., Hatefi, B., Ardakani, M. E., Ranjbar, A. M., & Mohammadi, F. (2023). Impact of licorice root on the burn healing process: a double-blinded randomized controlled clinical trial. Complementary Therapies in Medicine, 73, 102941. https://doi.org/10.1016/j.ctim.2023.102941
-
Zeng, Q., Qi, X., Shi, G., Zhang, M. and Haick, H. (2022). Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano, 16(2), 1708-1733.
https://doi.org/10.1021/acsnano.1c08411
-
Zhao, W., Li, J., Jin, K., Liu, W., Qiu, X. and Li, C. (2016). Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Materials Science and Engineering: C, 59, 1181-1194. https://doi.org/10.1016/j.msec.2015.11.026
-
Zhou, Y., Liu, Y., Zhang, M., Feng, Z., Yu, D. G. and Wang, K. (2022). Electrospun nanofiber membranes for air filtration: A review. Nanomaterials, 12(7), 1077. https://doi.org/10.3390/nano12071077