Research Article
BibTex RIS Cite
Year 2024, Volume: 33 Issue: 2, 112 - 118, 31.12.2024
https://doi.org/10.38042/biotechstudies.1601273

Abstract

References

  • Adebayo, G. P., Oduselu, G. O., Aderohunmu, D. V., Klika, K. D., Olasehinde, G. I., Ajani, O. O., & Adebiyi, E. (2024). Structure-based design, and development of amidinyl, amidoximyl and hydroxamic acid based organic molecules as novel antimalarial drug candidates. Arabian Journal of Chemistry, 17(2), 105573. https://doi.org/10.1016/j.arabjc.2023.105573
  • Agarwal, S., Gupta, M., & Choudhury, B. (2013). Bioprocess development for nicotinic acid hydroxamate synthesis by acyltransferase activity of Bacillus smithii strain IITR6b2. Journal of Industrial Microbiology and Biotechnology,40(9),937-946. https://doi.org/10.1007/s10295-013-1299-x
  • Bhatia, R. K., Bhatia, S. K., Kumar, V., & Bhalla, T. C. (2015). Bi-substrate kinetic analysis of acyl transfer activity of purified amidase from Pseudomonas putida BR-1. Catalysis Letters, 145, 1033-1040. https://doi.org/10.1007/s10562-014-1467-2
  • Bhatia, R. K., Bhatia, S. K., Mehta, P. K., & Bhalla, T. C. (2013). Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. Journal of Industrial Microbiology and Biotechnology, 40(1), 21-27. https://doi.org/10.1007/s10295-012-1206-x
  • Boodhoo, K. V. K., Flickinger, M. C., Woodley, J. M., & Emanuelsson, E. A. C. (2022). Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chemical Engineering and Processing-Process Intensification, 172, 108793. https://doi.org/10.1016/j.cep.2022.108793
  • Brammar, W. J., & Clarke, P. H. (1964). Induction and repression of Pseudomonas aeruginosa amidase. Microbiology,37(3),307-319. https://doi.org/10.1099/00221287-37-3-307
  • Devi, N., Patel, S. K., Kumar, P., Singh, A., Thakur, N., Lata, J., Pandey, D., Thakur, V., & Chand, D. (2022). Bioprocess scale-up for acetohydroxamic acid production by hyperactive acyltransferase of immobilized Rhodococcus pyridinivorans. Catalysis Letters, 152(4), 944-953. https://doi.org/10.1007/s10562-021-03696-4
  • Fournand, D., Bigey, F., Ratomahenina, R., Arnaud, A., & Galzy, P. (1997). Biocatalyst improvement for the production of short-chain hydroxamic acids. Enzyme and Microbial Technology, 20(6), 424-431. https://doi.org/10.1016/S0141-0229(96)00170-6
  • Kanwar, K., Sharma, D., Singh, H., Pal, M., Bandhu, R., & Azmi, W. (2024). In vitro effects of alginate lyase SG4+ produced by Paenibacillus lautus alone and combined with antibiotics on biofilm formation by mucoid Pseudomonas aeruginosa. Brazilian Journal of Microbiology, 1-15. https://doi.org/10.1007/s42770-024-01334-w
  • Končić, M. Z., Barbarić, M., Perković, I., & Zorc, B. (2011). Antiradical, chelating and antioxidant activities of hydroxamic acids and hydroxyureas. Molecules, 16(8),6232-6242. https://doi.org/10.3390/molecules16086232
  • Kumari, P., Chand, D. (2017) Immobilization of whole resting cell of Bacillus sp. APB-6 exhibiting amidotransferase activity on sodium alginate beads and its comparative study with whole resting cells. Journal of Innovations in Pharmaceutical and Biological Sciences, 4:121-127. https://jipbs.com/index.php/journal/article/view/247
  • Kumari. P., Devi, N., & Chand, D. (2017) Enhanced production of amidotransferase from Bacillus sp. ABP-6 by optimization of nutritional parameters using statistical experimental design. International Journal of Engineering Science Invention, 12-22. https://www.ijesi.org/papers/Vol(6)9/Version4/B0609041222.pdf
  • Lin, H., Xu, P., & Huang, M. (2022). Structure-based molecular insights into matrix metalloproteinase inhibitors in cancer treatments. Future Medicinal Chemistry, 14(1), 35-51. https://doi.org/10.4155/fmc-2021-0246
  • Mountanea, O. G., Mantzourani, C., Kokotou, M. G., Kokotos, C. G., & Kokotos, G. (2023). Sunlight‐or UVA‐Light‐Mediated Synthesis of Hydroxamic Acids from Carboxylic Acids. European Journal of Organic Chemistry,26(13),e202300046. https://doi.org/10.1002/ejoc.202300046
  • Pandey, D., Singh, R., & Chand, D. (2011). An improved bioprocess for synthesis of acetohydroxamic acid using DTT (dithiothreitol) treated resting cells of Bacillus sp. APB-6. Bioresource Technology, 102(11), 6579-6586. https://doi.org/10.1016/j.biortech.2011.03.071
  • Sharma, H., Singh, R. V., Ganjoo, A., Kumar, A., Singh, R., & Babu, V. (2022). Development of effective biotransformation process for benzohydroxamic acid production using Bacillus smithii IIIMB2907. 3 Biotech, 12(2), 44. https://doi.org/10.1007/s13205-022-03109-2
  • Sharma, M., Sharma, N. N., & Bhalla, T. C. (2012). Biotransformation of acetamide to acetohydroxamic acid at bench scale using acyl transferase activity of amidase of Geobacillus pallidus BTP-5x MTCC 9225. Indian Journal of Microbiology, 52, 76-82. https://doi.org/10.1007/s12088-011-0211-5
  • Singh, R. V., Sharma, H., Ganjoo, A., Kumar, A., & Babu, V. (2020). Novel amidase catalysed process for the synthesis of vorinostat drug. Journal of Applied Microbiology,129(6),1589-1597. https://doi.org/10.1111/jam.14753
  • Syed, Z., Sonu, K., Dongre, A., Sharma, G., & Sogani, M. (2020). A review on hydroxamic acids: Widespectrum chemotherapeutic agents. International Journal of Biology and Biomedical Engineering, 14, 75-88. https://doi.org/10.46300/91011.2020.14.12
  • Victorino da Silva Amatto, I., Gonsales da Rosa‐Garzon, N., Antonio de Oliveira Simoes, F., Santiago, F., Pereira da Silva Leite, N., Raspante Martins, J., & Cabral, H. (2022). Enzyme engineering and its industrial applications. Biotechnology and Applied Biochemistry, 69(2), 389-409. https://doi.org/10.1002/bab.2117
  • Wang, M., Tang, T., Huang, Z., Li, R., Ling, D., Zhu, J., ... & Li, X. (2022). Design and synthesis of novel hydroxamic acid derivatives based on quisinostat as promising antimalarial agents with improved safety. Acta Materia Medica, 1(2), 212-223. https://doi.org/10.15212/AMM-2022-0007
  • Wu, Z., Liu, C., Zhang, Z., Zheng, R., & Zheng, Y. (2020). Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnology Advances, 43, 107574. https://doi.org/10.1016/j.biotechadv.2020.107574
  • Xi, L., Tan, W., Li, J., Qu, J., & Liu, J. (2021). Cloning and characterization of a novel thermostable amidase, Xam, from Xinfangfangia sp. DLY26. Biotechnology Letters,43, 1395-1402. https://doi.org/10.1007/s10529-021-03124-y

Bench scale production of butyrohydroxamic acid using amidotransferase activity of amidase from whole resting cell Bacillus sp. APB-6.

Year 2024, Volume: 33 Issue: 2, 112 - 118, 31.12.2024
https://doi.org/10.38042/biotechstudies.1601273

Abstract

Butyrohydroxamic acid is a hydroxamic acid that has various biological and pharmacological applications. This study reports the bioconversion of butyramide and hydroxylamine to butyrohydroxamic acid with the help of amidase of Bacillus sp. APB-6, which has amidotransferase activity. Optimal conditions for the reaction were determined as 100/1200 mM butyramide/hydroxylamine ratio, incubation time 5 hr, pH 9.5, temperature 55°C, and resting cell concentration of 1.578 mg dcw ml-1. Under these conditions, the complete conversion of butyramide to butyrohydroxamic acid was attained in a 50 ml flask scale. The batch reaction was preferred over fed-batch reaction for scaling up the process to a 1 L scale, and the reaction time was reduced by 30 minutes. The final product yield was 10.23 g butyrohydroxamic acid with 95% purity, volumetric productivity of 2.273 g/L/h and 1.44 g/g/h catalytic productivity. The amidase used in this study showed high amidotransferase activity along with the industrially relevant process for the production of butyrohydroxamic acid. The NMR spectrum of the recovered product confirmed its identity as butyrohydroxamic acid.

Thanks

The author PK acknowledges the University Grant Commission (UGC), India for providing Junior/Senior Research Fellowship, and the Department of Biotechnology, Himachal Pradesh University Shimla, for providing necessary infrastructure and laboratory facilities.

References

  • Adebayo, G. P., Oduselu, G. O., Aderohunmu, D. V., Klika, K. D., Olasehinde, G. I., Ajani, O. O., & Adebiyi, E. (2024). Structure-based design, and development of amidinyl, amidoximyl and hydroxamic acid based organic molecules as novel antimalarial drug candidates. Arabian Journal of Chemistry, 17(2), 105573. https://doi.org/10.1016/j.arabjc.2023.105573
  • Agarwal, S., Gupta, M., & Choudhury, B. (2013). Bioprocess development for nicotinic acid hydroxamate synthesis by acyltransferase activity of Bacillus smithii strain IITR6b2. Journal of Industrial Microbiology and Biotechnology,40(9),937-946. https://doi.org/10.1007/s10295-013-1299-x
  • Bhatia, R. K., Bhatia, S. K., Kumar, V., & Bhalla, T. C. (2015). Bi-substrate kinetic analysis of acyl transfer activity of purified amidase from Pseudomonas putida BR-1. Catalysis Letters, 145, 1033-1040. https://doi.org/10.1007/s10562-014-1467-2
  • Bhatia, R. K., Bhatia, S. K., Mehta, P. K., & Bhalla, T. C. (2013). Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. Journal of Industrial Microbiology and Biotechnology, 40(1), 21-27. https://doi.org/10.1007/s10295-012-1206-x
  • Boodhoo, K. V. K., Flickinger, M. C., Woodley, J. M., & Emanuelsson, E. A. C. (2022). Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chemical Engineering and Processing-Process Intensification, 172, 108793. https://doi.org/10.1016/j.cep.2022.108793
  • Brammar, W. J., & Clarke, P. H. (1964). Induction and repression of Pseudomonas aeruginosa amidase. Microbiology,37(3),307-319. https://doi.org/10.1099/00221287-37-3-307
  • Devi, N., Patel, S. K., Kumar, P., Singh, A., Thakur, N., Lata, J., Pandey, D., Thakur, V., & Chand, D. (2022). Bioprocess scale-up for acetohydroxamic acid production by hyperactive acyltransferase of immobilized Rhodococcus pyridinivorans. Catalysis Letters, 152(4), 944-953. https://doi.org/10.1007/s10562-021-03696-4
  • Fournand, D., Bigey, F., Ratomahenina, R., Arnaud, A., & Galzy, P. (1997). Biocatalyst improvement for the production of short-chain hydroxamic acids. Enzyme and Microbial Technology, 20(6), 424-431. https://doi.org/10.1016/S0141-0229(96)00170-6
  • Kanwar, K., Sharma, D., Singh, H., Pal, M., Bandhu, R., & Azmi, W. (2024). In vitro effects of alginate lyase SG4+ produced by Paenibacillus lautus alone and combined with antibiotics on biofilm formation by mucoid Pseudomonas aeruginosa. Brazilian Journal of Microbiology, 1-15. https://doi.org/10.1007/s42770-024-01334-w
  • Končić, M. Z., Barbarić, M., Perković, I., & Zorc, B. (2011). Antiradical, chelating and antioxidant activities of hydroxamic acids and hydroxyureas. Molecules, 16(8),6232-6242. https://doi.org/10.3390/molecules16086232
  • Kumari, P., Chand, D. (2017) Immobilization of whole resting cell of Bacillus sp. APB-6 exhibiting amidotransferase activity on sodium alginate beads and its comparative study with whole resting cells. Journal of Innovations in Pharmaceutical and Biological Sciences, 4:121-127. https://jipbs.com/index.php/journal/article/view/247
  • Kumari. P., Devi, N., & Chand, D. (2017) Enhanced production of amidotransferase from Bacillus sp. ABP-6 by optimization of nutritional parameters using statistical experimental design. International Journal of Engineering Science Invention, 12-22. https://www.ijesi.org/papers/Vol(6)9/Version4/B0609041222.pdf
  • Lin, H., Xu, P., & Huang, M. (2022). Structure-based molecular insights into matrix metalloproteinase inhibitors in cancer treatments. Future Medicinal Chemistry, 14(1), 35-51. https://doi.org/10.4155/fmc-2021-0246
  • Mountanea, O. G., Mantzourani, C., Kokotou, M. G., Kokotos, C. G., & Kokotos, G. (2023). Sunlight‐or UVA‐Light‐Mediated Synthesis of Hydroxamic Acids from Carboxylic Acids. European Journal of Organic Chemistry,26(13),e202300046. https://doi.org/10.1002/ejoc.202300046
  • Pandey, D., Singh, R., & Chand, D. (2011). An improved bioprocess for synthesis of acetohydroxamic acid using DTT (dithiothreitol) treated resting cells of Bacillus sp. APB-6. Bioresource Technology, 102(11), 6579-6586. https://doi.org/10.1016/j.biortech.2011.03.071
  • Sharma, H., Singh, R. V., Ganjoo, A., Kumar, A., Singh, R., & Babu, V. (2022). Development of effective biotransformation process for benzohydroxamic acid production using Bacillus smithii IIIMB2907. 3 Biotech, 12(2), 44. https://doi.org/10.1007/s13205-022-03109-2
  • Sharma, M., Sharma, N. N., & Bhalla, T. C. (2012). Biotransformation of acetamide to acetohydroxamic acid at bench scale using acyl transferase activity of amidase of Geobacillus pallidus BTP-5x MTCC 9225. Indian Journal of Microbiology, 52, 76-82. https://doi.org/10.1007/s12088-011-0211-5
  • Singh, R. V., Sharma, H., Ganjoo, A., Kumar, A., & Babu, V. (2020). Novel amidase catalysed process for the synthesis of vorinostat drug. Journal of Applied Microbiology,129(6),1589-1597. https://doi.org/10.1111/jam.14753
  • Syed, Z., Sonu, K., Dongre, A., Sharma, G., & Sogani, M. (2020). A review on hydroxamic acids: Widespectrum chemotherapeutic agents. International Journal of Biology and Biomedical Engineering, 14, 75-88. https://doi.org/10.46300/91011.2020.14.12
  • Victorino da Silva Amatto, I., Gonsales da Rosa‐Garzon, N., Antonio de Oliveira Simoes, F., Santiago, F., Pereira da Silva Leite, N., Raspante Martins, J., & Cabral, H. (2022). Enzyme engineering and its industrial applications. Biotechnology and Applied Biochemistry, 69(2), 389-409. https://doi.org/10.1002/bab.2117
  • Wang, M., Tang, T., Huang, Z., Li, R., Ling, D., Zhu, J., ... & Li, X. (2022). Design and synthesis of novel hydroxamic acid derivatives based on quisinostat as promising antimalarial agents with improved safety. Acta Materia Medica, 1(2), 212-223. https://doi.org/10.15212/AMM-2022-0007
  • Wu, Z., Liu, C., Zhang, Z., Zheng, R., & Zheng, Y. (2020). Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnology Advances, 43, 107574. https://doi.org/10.1016/j.biotechadv.2020.107574
  • Xi, L., Tan, W., Li, J., Qu, J., & Liu, J. (2021). Cloning and characterization of a novel thermostable amidase, Xam, from Xinfangfangia sp. DLY26. Biotechnology Letters,43, 1395-1402. https://doi.org/10.1007/s10529-021-03124-y
There are 23 citations in total.

Details

Primary Language English
Subjects Enzymes, Bioprocessing, Bioproduction and Bioproducts
Journal Section Research Articles
Authors

Pankaj Kumari This is me 0000-0001-9960-6122

Mohinder Pal This is me 0000-0003-2823-0062

Abhishek Thakur This is me 0000-0002-9432-2523

Duni Chand This is me

Early Pub Date December 13, 2024
Publication Date December 31, 2024
Submission Date January 19, 2024
Acceptance Date November 4, 2024
Published in Issue Year 2024 Volume: 33 Issue: 2

Cite

APA Kumari, P., Pal, M., Thakur, A., Chand, D. (2024). Bench scale production of butyrohydroxamic acid using amidotransferase activity of amidase from whole resting cell Bacillus sp. APB-6. Biotech Studies, 33(2), 112-118. https://doi.org/10.38042/biotechstudies.1601273


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services