Research Article
BibTex RIS Cite

Cellulose fibers production from agricultural waste and use as functional cellulose additive in polylactic acid bioplastic films

Year 2026, Volume: 35 Issue: 1, 48 - 64
https://doi.org/10.38042/biotechstudies.1803284

Abstract

This study explores a sustainable method for bioplastic production using agricultural waste. Polylactic acid (PLA)-based films were developed by incorporating cellulose extracted from rice husks (RH) and sunflower stalks (SS). The cellulose extraction process achieved an average efficiency of 85% based on total agricultural waste mass. Chemical structures of PLA and composite films were examined using FTIR spectroscopy. All films were flexible and transparent, with pure PLA films exhibiting higher transparency. Such properties make PLA films ideal for packaging, biomedical, and electronic applications due to their lightweight and adaptable nature. Films containing SS-derived cellulose showed slightly greater thickness (0.197–0.232 mm) compared to those with RH cellulose. FTIR analysis revealed interactions between PLA and cellulose, indicated by reduced intensity of the –OH stretching band at 3338 cm⁻¹ and PLA characteristic peaks at 1452, 1748, and 1181 cm⁻¹. These changes suggest hydrogen bonding and limited polymer chain mobility due to conformational adjustments. The spectra of composite films resembled those of PLA and cellulose, confirming enhanced crystallinity and molecular interactions. This is the first comparative study using cellulose from both RH and SS in PLA-based bioplastics, demonstrating their combined potential as sustainable reinforcements for biodegradable materials.

Supporting Institution

This study was financially supported by Presidency of Turkey, Presidency of Strategy and Budget coordinated by Council of Higher Education and organized by The Scientific Research Projects Coordination Unit of Hitit University

Project Number

Project Number: MUH19011.21.001

Thanks

The authors thank to HUBTUAM (Hitit University Scientific and Technology, Aplication and Research Center) and R&D Center of Elif Plastik Ambalaj Sanayi ve Tic. A.Ş.-Huhtamaki Flexibles İstanbul for technical support.

References

  • Agu, C. V., Njoku, O.U., Chilaka, F.C., Agbiogwu, D., Iloabuchi, K.V., & Ukazu, B. (2014). Physicochemical Properties of Lignocellulosic Biofibres from South Eastern Nigeria: Their suitability for biocomposite technology. African Journal of Biotechnology, 13, 2050–2057. https://doi.org/10.5897/ajb2013.13443
  • Aguilar, N.M., Arteaga-Cardona, F., de Anda Reyes, M. E.; Gervacio-Arciniega, J.J., & Salazar-Kuri, U. (2019). Magnetic Bioplastics Based on Isolated Cellulose from Cotton and Sugarcane Bagasse. Materials Chemistry and Physics, 238, 121921. https://doi.org/10.1016/j.matchemphys.2019.121921
  • Agustin, M.B., Ahmmad, B., Alonzo, S.M.M., & Patriana, F.M. (2014). Bioplastic Based on Starch and Cellulose Nanocrystals from Rice Straw. Journal of Reinforced Plastics and Composites, 33, 2205-2213. https://doi.org/10.1177/0731684414558325
  • Arjmandi, R., Hassan, A., Eichhorn, S.J., Mohamad Haafiz, M.K., Zakaria, Z., & Tanjung, F.A. (2015). Enhanced Ductility and Tensile Properties of Hybrid Montmorillonite/Cellulose Nanowhiskers Reinforced Polylactic Acid Nanocomposites. Journal of Materials Science, 50, 3118–3130. https://doi.org/10.1007/s10853-015-8873-8
  • Arul Marcel Moshi, A., Ravindran, D., Sundara Bharathi, S.R., Suganthan, V., & Kennady Shaju Singh, G. (2019). Characterization of New Natural Cellulosic Fibers-A Comprehensive Review. IOP Conference Series: Materials Science and Engineering, 574, 012013. https://doi.org/10.1088/1757-899X/574/1/012013
  • Barczewski, M., Andrzejewski, J., Majchrowski, R., Dobrzycki1, K., & Formela, K. (2021). Mechanical Properties, Microstructure and Surface Quality of Polypropylene Green Composites as a Function of Sunflower Husk Waste Filler Particle Size and Content, Journal of Renewable Materials, 9 (5), 841-853. https://doi.org/10.32604/jrm.2021.014490
  • Battegazzore, D., Bocchini, S., Alongi, J., Frache, A., & Marino, F. (2014). Cellulose Extracted From Rice Husk as Filler for Poly(Lactic Acid): Preparation and Characterization. Cellulose, 21, 1813–1821. https://doi.org/10.1007/s10570-014-0207-5
  • Bayer, I. S., Guzman-Puyol, S., Heredia-Guerrero, J.A., Ceseracciu, L., Pignatelli, F., Ruffilli, R., Cingolani, R., & Athanassiou, A. (2014). Direct Transformation of Edible Vegetable Waste into Bioplastics. Macromolecules, 47, 5135–5143. http://doi:10.1021/ma5008557
  • Bilo, F., Pandini, S., Sartore, L., Depero, L.E., Gargiulo, G., Bonassi, A., Federici, S., & Bontempi, E. (2018). A Sustainable Bioplastic Obtained from Rice Straw. Journal of Cleaner Production, 200, 357–368. https://doi.org/10.1016/j.jclepro.2018.07.252
  • Binici, H., Eken, M., Kara, M., & Dolaz, M. (2013). An Environment-Friendly Thermal Insulation Material From Sunflower Stalk, Textile Waste and Stubble Fibers. International Conference on Renewable Energy Research and Applications (ICRERA) Proceedings, 833–846, Madrid, Spain. https://doi.org/10.1109/ICRERA.2013.6749868
  • Boudjema, H.L., Bendaikha, H., & Maschke, U. (2020). Green Composites Based on Atriplex Halimus Fibers and PLA Matrix. Journal of Polymer Engineering, 40, 693-702. https://doi.org/10.1515/polyeng-2020-0068
  • Da Rosa, L.C., Santor, C.G., Lovato, A., Da Rosa, C.S., & Güths, S. (2015). Use of Rice Husk and Sunflower Stalk as A Substitute for Glass Wool in Thermal Insulation of Solar Collector. Journal of Cleaner Production, 104, 90–97. https://doi.org/10.1016/j.jclepro.2015.04.127
  • Dinesh, G.H., Nguyen, D.D., Ravindran, B., Chang, S.W., Vo, D.V.N., Bach, Q.V., Tran, H.N., Basu, M.J., Mohanrasu, K., Murugan, R.S., Swetha, T.A., Sivapraksh, G., Selvaraj, A., & Arun, A. (2020). Simultaneous Biohydrogen (H2) and Bioplastic (Poly-Β-Hydroxybutyrate-PHB) Productions under Dark, Photo, and Subsequent Dark and Photo Fermentation Utilizing Various Wastes. International Journal of Hydrogen Energy, 45, 5840–5853. https://doi.org/10.1016/j.ijhydene.2019.09.036
  • Emadian, S. M., Onay, T. T., & Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management, 59, 526-536. https://doi.org/10.1016/j.wasman.2016.10.006
  • Ewulonu, C. M., Liu, X., Wu, M., & Huang, Y. (2019). Ultrasound-Assisted Mild Sulphuric Acid Ball Milling Preparation of lignocellulose Nanofibers (LCNFs) from Sunflower Stalks (SFS). Cellulose, 26, 4371-4389. https://doi.org/10.1007/s10570-019-02382-4
  • Flauzino Neto, W.P., Silvério, H.A., Dantas, N.O., & Pasquini, D. (2013). Extraction and Characterization of Cellulose Nanocrystals from Agro-Industrial Residue-Soy Hulls. Industrial Crops and Products, 42, 480–488. https://doi.org/10.1016/j.indcrop.2012.06.041
  • Fortunati, E., Luzi, F., Jiménez, A., Gopakumar, D. A., Puglia, D., Thomas, S., Kennya, J. M., Chiralt, A., & Torre, L. (2016). Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydrate Polymers, 149, 357–368. https://doi.org/10.1016/j.carbpol.2016.04.120
  • Ghavidel, A., Gelbrich, J., Kuqo, A., Vasilache, V., & Sandu, I. (2020). Investigation of Archaeological European White elm (Ulmus laevis) for Identifying and Characterizing the Kind of Biological Degradation. Heritage, 3, 1083–1093. https://doi.org/10.3390/heritage3040060
  • Gomaa, S.F., Madkour, T.M., Moghannem, S., & El-Sherbiny, I.M. (2017). New Polylactic Acid/ Cellulose Acetate-Based Antimicrobial Interactive Single Dose Nanofibrous Wound Dressing Mats. International Journal of Biological Macromolecules, 105, 1148–1160. https://doi.org/10.1016/j.ijbiomac.2017.07.145
  • Hamdan, M.H.M., Siregar, J.P., Rejab, M.R.M., Bachtiar, D., Jamiluddin, J., & Tezara, C. (2019). Effect of Maleated Anhydride on Mechanical Properties of Rice Husk Filler Reinforced PLA Matrix Polymer Composite. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 113–124. https://doi.org/10.1007/s40684-019-00017-4.
  • Kaykioğlu, G., & Güneş, E. (2016). Kinetic and Equilibrium Study of Methylene Blue Adsorption Using H2SO4−Activated Rice Husk Ash. Desalination and Water Treatment, 57, 7085–7097. https://doi.org/ 10.1080/19443994.2015.1014859
  • Kaymakci, A., Ayrilmis, N., & Gulec, T. (2013). Surface Properties and Hardness of Polypropylene Composites Filled with Sunflower Stalk Flour. BioResources, 8, 592–602. https://doi.org/10.15376/biores.8.1.592-602
  • Kulic, G., & Radojicic, V. (2011). Analysis of Cellulose Content in Stalks and Leaves of Large Leaf Tobacco. Journal of Agricultural Sciences, 56 3, 207–215. https://doi.org/10.2298/jas1103207k
  • Liu, M., Arshadi, M., Javi, F., Lawrence, P., Davachi, S.M., & Abbaspourrad, A. (2020). Green and Facile Preparation of Hydrophobic Bioplastics From Tea Waste. Journal of Cleaner Production, 276, 123353. https://doi.org/10.1016/j.jclepro.2020.123353
  • Marichelvam, M.K., Jawaid, M., & Asim, M. (2019). Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials. Fibers, 7, 1–14. https://doi.org/10.3390/fib7040032
  • Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C.J.S., Leclaire, P., & Michaud, P. (2014). Mechanical, Thermal and Acoustical Characterizations of An Insulating Bio-Based Composite Made from Sunflower Stalks Particles and Chitosan. Industrial Crops and Products, 58, 244–250. https://doi.org/10.1016/j.indcrop.2014.04.022
  • Nurhayati, Irianto, H. E., Riastuti, R., Pangesty, A. I., Nugraha, A. F., Todo, M., Jumahat, A., Chalid, M. (2024). Extraction and Characterization of Micro-fibrillated Cellulose from Rice Husk Waste for Biomedical Purposes. International Journal of Technology, 15(2) 342-352. https://doi.org/10.14716/ijtech.v15i2.6698
  • Ouensanga, A. (1989). Variation of Fiber Composition in Sugar Cane Stalks, Wood and Fiber Science. Journal of the Society of Wood Science and Technology (USA), 21(2), 105–111.
  • Pratiwi, R., Rahayu, D., & Barliana, M.I. (2017). Characterization of Bioplastic from Rice Straw Cellulose. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8, 217–221.
  • Sert, M., Arslanoğlu, A., & Ballice, L. (2018). Conversion of Sunflower Stalk Based Cellulose to the Valuable Products using Choline Chloride Based Deep Eutectic Solvents. Renewable Energy, 118, 993–1000. https://doi.org/10.1016/j.renene.2017.10.083
  • Singh, A.A., Genovese, M.E., Mancini, G., Marini, L., & Athanassiou, A. (2020). Green Processing Route for Polylactic Acid-Cellulose Fiber Biocomposites. ACS Sustainable Chemistry and Engineering, 8, 4128–4136. https://doi.org/10.1021/acssuschemeng.9b06760
  • Singhvi, M.S., Zinjarde, S.S., & Gokhale, D.V. (2019). Polylactic Acid: Synthesis And Biomedical Applications. Journal of Applied Microbiology, 127, 1612–1626. https://doi.org/10.1111/jam.14290
  • Sousa, S., Costa, A., Silva, A., & Simões, R. (2019). Poly(lactic acid)/Cellulose Films Produced from Composite Spheres Prepared by Emulsion-Solvent Evaporation Method. Polymers, 11, 1–19. https://doi.org/10.3390/polym11010066
  • Yunus, M.A., Raya, I., Tuara, M., & Tuara, Z.I. (2019). Extraction Cellulose from Rice Husk. Indonesia Chimica Acta, 12 (2), 79–83.
  • Yussuf, A.A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites, The influence of the natural fibers on the mechanical, thermal and biodegradability properties. Journal of Polymers and the Environment, 18, 422–429. https://doi.org/10.1007/s10924-010-0185-0.
  • Zhang, J., Zhang, H., & Zhang, J. (2014). Evaluation of liquid ammonia treatment on surface characteristics of hemp fiber. Cellulose, 21, 569–579. https://doi.org/10.1007/s10570-013-0097-y
  • Zhiltsova, T., Campos, J., Costa, A., & Oliveira, M. S. A. (2024). Sustainable Polypropylene Based Composites with Agro-Waste Fillers: Thermal, Morphological, Mechanical Properties and Dimensional Stability, Materials, 17, 696. https://doi.org/10.3390/ma17030696
  • Zhu, L., Qiu, J., Liu, W., & Sakai, E. (2019). Mechanical and Thermal Properties of Rice Straw/PLA Modified by Nano Attapulgite/PLA Interfacial Layer. Composites Communications, 13, 18–21. https://doi.org/10.1016/j.coco.2019.02.001
  • Wu, C.S. (2014). Preparation and Characterization of Polyhydroxyalkanoate Bioplastic-Based Green Renewable Composites from Rice Husk. Journal of Polymers and the Environment, 22, 384–392. https://doi.org/10.1007/s10924-014-0662-y
There are 39 citations in total.

Details

Primary Language English
Subjects Bioprocessing, Bioproduction and Bioproducts
Journal Section Research Articles
Authors

Filiz Boran 0000-0002-4315-9949

Nihal Güzel 0000-0002-2387-9009

Emel Tamahkar Irmak 0000-0002-5913-8333

Ömer Barışkan Yasan 0000-0002-5344-1198

Selin Karaca 0000-0003-3987-535X

Betül Türel Erbay 0009-0008-2688-797X

Project Number Project Number: MUH19011.21.001
Early Pub Date October 14, 2025
Publication Date October 19, 2025
Submission Date March 11, 2025
Acceptance Date September 17, 2025
Published in Issue Year 2026 Volume: 35 Issue: 1

Cite

APA Boran, F., Güzel, N., Tamahkar Irmak, E., … Yasan, Ö. B. (2025). Cellulose fibers production from agricultural waste and use as functional cellulose additive in polylactic acid bioplastic films. Biotech Studies, 35(1), 48-64. https://doi.org/10.38042/biotechstudies.1803284


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services