Araştırma Makalesi
BibTex RIS Kaynak Göster

On the Coefficent Bound Estimates and Fekete-Szegö Problem

Yıl 2023, , 337 - 343, 27.06.2023
https://doi.org/10.17798/bitlisfen.1194877

Öz

In this study, we introduce and examine a certain subclass of analytic functions in the open unit disk in the complex plane. Here, we give coefficient bound estimates and investigate the Fekete-Szegö problem for the introduced class. Some interesting special cases of the results obtained here are also discussed.

Kaynakça

  • [1] M. Buyankara, M. Çağlar, L.-I. Cotîrlă, “New subclasses of bi-univalent functions with respect to the symmetric points defined by bernoulli polynomials”, Axioms, vol.11, no.11, pp. 652-660, 2022.
  • [2] D. A. Brannan and J. Clunie, “Aspects of Contemporary Complex Analysis”, Academic Press, London and New York, USA, 1980.
  • [3] D. A. Brannan and T. S. Taha, “On Some Classes of Bi-univalent Functions”, Studia Univ. Babes-Bolyai Mathematics, vol. 31, pp.70-77, 1986.
  • [4] Y. Cheng, R. Srivastava, J. L. Liu, “Applications of the q-derivative operator to new families of bi-univalent functions related to the Legendre Polynomials”, Axioms, vol. 11, no.11, pp. 595-607, 2022.
  • [5] J. Dziok, “Classes of meromorphic harmonic functions defined by Sălăgean operator”, Revista de la Real Academia de Ciencias Exactas, Físicay Naturales. Serie A. Matemáticas, vol. 116, no.4, pp.1-16, 2022.
  • [6] P. L. Duren, “Univalent Functions”, In: Grundlehren der Mathematischen Wissenschaften, Band 259, New- York, Berlin, Heidelberg and Tokyo, Springer-Verlag, 1983.
  • [7] M. Fekete and G. Szegö, “Eine Bemerkung über ungerade schlichte funktionen”, Journal of the London Mathematical Society, vol.8, pp.85-89, 1993.
  • [8] U. Grenander and G. Szegö, “Toeplitz form and their applications”, California Monographs in Mathematical Sciences, University California Press, Berkeley, 1958.
  • [9] H.Ö. Güney, G.I. Oros, S. Owa, “An Application of Sălăgean operator concerning starlike functions”, Axioms, vol. 11, no.2, pp. 50-59, 2022.
  • [10] M. Lewin, “On a coefficient problem for bi-univalent functions”, Proceedings of the American Mathematical Society, vol.18, pp.63-68, 1967.
  • [11] S. Li, L. Ma, H. Tang, “On Janowski type p-harmonic functions associated with generalized Sălăgean operator”, AIMS Mathematics, vol. 6, no.1, pp.569-583, 2021.
  • [12] N. Mustafa, “Fekete- Szegö problem for certain subclass of analytic and bi-univalent functions”, Journal of Scientific and Engineering Research, vol.4, no.8, pp.30-400, 2017.
  • [13] N. Mustafa and M. C. Gündüz, “The Fekete-Szegö problem for certain class of analytic and univalent functions”, Journal of Scientific and Engineering Research, vol.6, no.5, pp.232-239, 2019.
  • [14] N. Mustafa and G. Murugusundaramoorthy, “Second Hankel for mocanu type bi-starlike functions related to shell shaped region”, Turkish Journal of Mathematics, vol.45, pp.1270-1286, 2021.
  • [15] E. Netanyahu, “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function”, Archive for Rational Mechanics and Analysis, vol.32, pp.100-112, 1969.
  • [16] G.I. Oros, L.-I. Cotîrlă, “Coefficient Estimates and the Fekete–Szegö problem for new classes of m-fold symmetric bi-univalent functions”, Mathematics, vol. 10, pp. 129-141, 2022. https://doi.org/10.3390/math10010129
  • [17] Á.O. Páll-Szabó, G. I. Oros, “Coefficient related studies for new classes of bi-univalent functions”, Mathematics, vol. 8, no.7, pp. 1110-1123, 2020.
  • [18] G. S. Sălăgean, “Subclasses of univalent functions”, Complex Analysis, vol.103, pp.362-372, 1983.
  • [19] H. M. Srivastava, A. K. Mishra and P. Gochhayat, “Certain sublcasses of analytic and bi-univalent functions”, Applied Mathematics Letters, vol.23, pp.1188-1192, 2010.
  • [20] H. M. Srivastava, G. Murugusundaramoorthy, T. Bulboacă, “The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Mathemáticas, vol. 116, no.4, 1-21, 2022.
  • [21] P. Zaprawa, “On the Fekete-Szegö problem for the classes of bi-univalent functions”, Bulletin of the Belgain Mathematical Society, vol.21, pp.169-178, 2014.
  • [22] Q. H. Xu, G. Xiao and H. M. Srivastava, “A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems”, Applied Mathematics and Computation, vol. 218, pp.11461-11465, 2012.
Yıl 2023, , 337 - 343, 27.06.2023
https://doi.org/10.17798/bitlisfen.1194877

Öz

Kaynakça

  • [1] M. Buyankara, M. Çağlar, L.-I. Cotîrlă, “New subclasses of bi-univalent functions with respect to the symmetric points defined by bernoulli polynomials”, Axioms, vol.11, no.11, pp. 652-660, 2022.
  • [2] D. A. Brannan and J. Clunie, “Aspects of Contemporary Complex Analysis”, Academic Press, London and New York, USA, 1980.
  • [3] D. A. Brannan and T. S. Taha, “On Some Classes of Bi-univalent Functions”, Studia Univ. Babes-Bolyai Mathematics, vol. 31, pp.70-77, 1986.
  • [4] Y. Cheng, R. Srivastava, J. L. Liu, “Applications of the q-derivative operator to new families of bi-univalent functions related to the Legendre Polynomials”, Axioms, vol. 11, no.11, pp. 595-607, 2022.
  • [5] J. Dziok, “Classes of meromorphic harmonic functions defined by Sălăgean operator”, Revista de la Real Academia de Ciencias Exactas, Físicay Naturales. Serie A. Matemáticas, vol. 116, no.4, pp.1-16, 2022.
  • [6] P. L. Duren, “Univalent Functions”, In: Grundlehren der Mathematischen Wissenschaften, Band 259, New- York, Berlin, Heidelberg and Tokyo, Springer-Verlag, 1983.
  • [7] M. Fekete and G. Szegö, “Eine Bemerkung über ungerade schlichte funktionen”, Journal of the London Mathematical Society, vol.8, pp.85-89, 1993.
  • [8] U. Grenander and G. Szegö, “Toeplitz form and their applications”, California Monographs in Mathematical Sciences, University California Press, Berkeley, 1958.
  • [9] H.Ö. Güney, G.I. Oros, S. Owa, “An Application of Sălăgean operator concerning starlike functions”, Axioms, vol. 11, no.2, pp. 50-59, 2022.
  • [10] M. Lewin, “On a coefficient problem for bi-univalent functions”, Proceedings of the American Mathematical Society, vol.18, pp.63-68, 1967.
  • [11] S. Li, L. Ma, H. Tang, “On Janowski type p-harmonic functions associated with generalized Sălăgean operator”, AIMS Mathematics, vol. 6, no.1, pp.569-583, 2021.
  • [12] N. Mustafa, “Fekete- Szegö problem for certain subclass of analytic and bi-univalent functions”, Journal of Scientific and Engineering Research, vol.4, no.8, pp.30-400, 2017.
  • [13] N. Mustafa and M. C. Gündüz, “The Fekete-Szegö problem for certain class of analytic and univalent functions”, Journal of Scientific and Engineering Research, vol.6, no.5, pp.232-239, 2019.
  • [14] N. Mustafa and G. Murugusundaramoorthy, “Second Hankel for mocanu type bi-starlike functions related to shell shaped region”, Turkish Journal of Mathematics, vol.45, pp.1270-1286, 2021.
  • [15] E. Netanyahu, “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function”, Archive for Rational Mechanics and Analysis, vol.32, pp.100-112, 1969.
  • [16] G.I. Oros, L.-I. Cotîrlă, “Coefficient Estimates and the Fekete–Szegö problem for new classes of m-fold symmetric bi-univalent functions”, Mathematics, vol. 10, pp. 129-141, 2022. https://doi.org/10.3390/math10010129
  • [17] Á.O. Páll-Szabó, G. I. Oros, “Coefficient related studies for new classes of bi-univalent functions”, Mathematics, vol. 8, no.7, pp. 1110-1123, 2020.
  • [18] G. S. Sălăgean, “Subclasses of univalent functions”, Complex Analysis, vol.103, pp.362-372, 1983.
  • [19] H. M. Srivastava, A. K. Mishra and P. Gochhayat, “Certain sublcasses of analytic and bi-univalent functions”, Applied Mathematics Letters, vol.23, pp.1188-1192, 2010.
  • [20] H. M. Srivastava, G. Murugusundaramoorthy, T. Bulboacă, “The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Mathemáticas, vol. 116, no.4, 1-21, 2022.
  • [21] P. Zaprawa, “On the Fekete-Szegö problem for the classes of bi-univalent functions”, Bulletin of the Belgain Mathematical Society, vol.21, pp.169-178, 2014.
  • [22] Q. H. Xu, G. Xiao and H. M. Srivastava, “A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems”, Applied Mathematics and Computation, vol. 218, pp.11461-11465, 2012.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Nizami Mustafa 0000-0002-2758-0274

Semra Korkmaz 0000-0002-7846-9779

Erken Görünüm Tarihi 27 Haziran 2023
Yayımlanma Tarihi 27 Haziran 2023
Gönderilme Tarihi 26 Ekim 2022
Kabul Tarihi 13 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

IEEE N. Mustafa ve S. Korkmaz, “On the Coefficent Bound Estimates and Fekete-Szegö Problem”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 12, sy. 2, ss. 337–343, 2023, doi: 10.17798/bitlisfen.1194877.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr