COVID-19 Aşısının Kalp Krizleri Üzerindeki Etkilerinin Matematiksel Modellenmesi ve Sayısal Analizi
Year 2025,
Volume: 14 Issue: 2, 859 - 876, 30.06.2025
Mehmet Kocabıyık
,
Zeynep Buse Akyol
Abstract
Koronavirüs hastalığı, SARS-CoV-2 virüsünün neden olduğu bulaşıcı bir hastalıktır. Hastalık kişiden kişiye yayılır ve şiddetli akut sendroma ve ölüme neden olduğu bilinmektedir. Hastalığa karşı bir aşı, ölümcül etkisini azaltmak için kısa sürede geliştirildi. Ölümlerdeki azalma aşı ile sağlandı. Ancak bu azalmaya ek olarak, aşının yan etkileri de olmuştur. Bunlardan biri, aşılanan kişilerde gözlenen kalp krizi artışıdır. Bu çalışma, COVID-19 aşısının kalp krizleri üzerindeki etkisini araştırmaktadır. Bir matematiksel model geliştirilmiş ve duyarlı bireyler aşıdan önce kalp krizi geçirenler ve geçirmeyenler olarak gruplara ayrılmıştır. Geliştirilen matematiksel model kullanılarak, çalışma COVID-19'dan sonra kalp krizi vakalarındaki artışın aşıyla ilişkili olup olmadığını tartışmaktadır. Öncelikle sistemin bir diyagramı elde edilmiş ve temel üreme sayısı hesaplanmıştır. Sistemin doğru dinamiklere sahip olup olmadığını değerlendirmek için denge noktaları belirlenmiştir. Denge noktalarının kararlılığı özdeğerler kullanılarak analiz edilmiştir. Bulguları desteklemek için sayısal hesaplamalar ve grafikler de sağlanmıştır. Modelin gerçek yaşam verileriyle incelenebileceği ve COVID-19 aşısının kalp krizleri üzerindeki etkisinin analiz edilebileceği gösterilmiştir. Bu çalışma bu alandaki literatüre önemli bir katkı sağlamıştır.
References
-
A. Zeb, E. Alzahrani, V. S. Erturk, and G. Zaman, “Mathematical model for coronavirus disease 2019 (COVID‐19) containing isolation class,” BioMed Research International, vol. 2020, no. 1, p. 3452402, 2020.
-
A. Adiga, D. Dubhashi, B. Lewis, M. Marathe, S. Venkatramanan, and A. Vullikanti, “Mathematical models for COVID-19 pandemic: A comparative analysis,” Journal of the Indian Institute of Science., vol. 100, no. 4, pp. 793–807, 2020.
-
N. H. Tuan, H. Mohammadi, and S. Rezapour, “A mathematical model for COVID-19 transmission by using the Caputo fractional derivative,” Chaos, Solitons Fractals, vol. 140, p. 110107, 2020.
-
O. J. Peter, H. S. Panigoro, A. Abidemi, M. M. Ojo, and F. A. Oguntolu, “Mathematical model of COVID-19 pandemic with double dose vaccination,” Acta Biotheoretica, vol. 71, no. 2, p. 9, 2023.
-
K. Logeswari, C. Ravichandran, and K. S. Nisar, “Mathematical model for spreading of COVID‐19 virus with the Mittag–Leffler kernel,” Numerical. Methods Partial Differential Equations, vol. 40, no. 1, p. e22652, 2024.
-
A. Magadum and R. Kishore, “Cardiovascular manifestations of COVID-19 infection,” Cells, vol. 9, no. 11, p. 2508, 2020.
-
F. Özköse, M. Yavuz, M. T. Şenel, and R. Habbireeh, “Fractional order modelling of Omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom,” Chaos, Solitons Fractals, vol. 157, p. 111954, 2022.
-
A. Ahmad, S. Abbas, M. Inc, and A. Ghaffar, “Stability Analysis of SARS‐CoV‐2 with Heart Attack Effected Patients and Bifurcation,” Advanced Biology, vol. 8, no. 4, p. 2300540, 2024.
-
F. Evirgen, F. Özköse, M. Yavuz, and N. Özdemir, “Real data-based optimal control strategies for assessing the impact of the Omicron variant on heart attacks,” AIMS Bioengineering, vol. 10, no. 3, 2023.
-
P. Van den Driessche and J. Watmough, “Further notes on the basic reproduction number,” Mathematical Epidemiology, pp. 159–178, 2008.
-
J. H. Jones, “Notes on R0,” California: Dept. Anthropol. Sci., pp. 1–19, 2007.
-
J. Hefferman, R. Smith, and L. Wahl, “Perspectives on the basic reproduction ratio,” J. R. Soc. Interface, vol. 2, pp. 281–293, 2005.
-
C. Taş and R. Kara, “Modeling the Impact of Vaccination on Epidemic Disease Variants with Hospitalization: A Case Study for the COVID-19 Pandemic in Turkey,” Journal of the Institute of Science and Technology, vol. 14, no. 1, pp. 390–402, 2024.
-
J. C. Butcher, “Numerical methods for ordinary differential equations”, John Wiley Sons, 2016.
-
A. Gökçe, “Numerical bifurcation analysis for a prey-predator type interactions with a time lag and habitat complexity”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 1, pp. 57–66, 2021, DOI 10.17798/bitlisfen.840245.
-
I. T. Cetinkaya, M. Kocabiyik and M. Y. Ongun, “Stability analysis of discretized model of glucose-insulin homeostasis”, Celal Bayar University Journal of Science, vol. 17, no. 4, pp. 369-377, 2021, DOI 10.18466/cbayarfbe.838451.
-
M. Kocabiyik, “Nonstandard Discretization and Stability Analysis of a novel type Malaria-Ross Model”, Journal of the Institute of Science and Technology, vol. 12, no. 2, pp. 1023-1033, 2022, DOI 10.21597/jist.1026364.
-
M. Kocabiyik and M.Y. Ongun, “Construction a distributed order smoking model and its nonstandard finite difference discretization”, AIMS Mathematics, vol. 7, no. 3, pp. 4636-4654, 2022, DOI 10.3934/math.2022258.
-
M. Kocabiyik and M. Y. Ongun, “Discretization and Stability Analysis for a Generalized Type Nonlinear Pharmacokinetic Models”, Gazi University Journal of Science, vol. 36, no. 4, pp. 1675-1691, 2023, DOI 10.35378/gujs.1027381.
-
M. Kocabiyik, and M. Yakit Ongun, “Distributed order hantavirus model and its nonstandard discretizations and stability analysis”, Mathematical Methods in the Applied Sciences, vol. 48, no. 2, pp. 2404–2420, 2025, DOI 10.1002/mma.10442.
-
Z. Al Jammali and İ. Turhan Çetinkaya, “A Nonstandard Finite Difference Scheme for a Mathematical Model Presenting the Climate Change on the Oxygen-plankton System”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, pp. 798–807, 2024, doi: 10.17798/bitlisfen.1492437.
-
J. C. Butcher, "A history of Runge-Kutta methods", Applied numerical mathematics, vol. 20, pp. 247-260, 1996.
Mathematical Modeling and Numerical Analysis of the Effects of COVID-19 Vaccine on Heart Attacks
Year 2025,
Volume: 14 Issue: 2, 859 - 876, 30.06.2025
Mehmet Kocabıyık
,
Zeynep Buse Akyol
Abstract
The Coronavirus disease is an infectious disease caused by the SARS-CoV-2 virus. The disease spreads from person to person and is known to cause severe acute syndrome and death. A vaccine against the disease was developed at short notice to reduce its fatal impact. The reduction in deaths was achieved with the vaccine. However, in addition to this reduction, the vaccine has also been associated with side effects. One of these is an observed increase in heart attacks in vaccinated people. This study investigates the effect of the COVID-19 vaccine on heart attacks. A mathematical model has been developed, and susceptible individuals have been divided into groups of those who have had a heart attack before vaccination and those who have not. Using the developed mathematical model, the study discusses whether the increase in heart attack cases after COVID-19 has been related to the vaccine. First, a diagram of the system has been obtained, and the basic reproduction number has been calculated. Equilibrium points were determined to assess whether the system has correct dynamics. The stability of the equilibrium points has been analyzed using eigenvalues. Numerical calculations and graphs have also been provided to support the findings. It has been demonstrated that the model can be examined with real-life data, allowing the impact of the COVID-19 vaccine on heart attacks to be analyzed. This study has made a significant contribution to literature in this field.
Ethical Statement
The study is complied with research and publication ethics.
References
-
A. Zeb, E. Alzahrani, V. S. Erturk, and G. Zaman, “Mathematical model for coronavirus disease 2019 (COVID‐19) containing isolation class,” BioMed Research International, vol. 2020, no. 1, p. 3452402, 2020.
-
A. Adiga, D. Dubhashi, B. Lewis, M. Marathe, S. Venkatramanan, and A. Vullikanti, “Mathematical models for COVID-19 pandemic: A comparative analysis,” Journal of the Indian Institute of Science., vol. 100, no. 4, pp. 793–807, 2020.
-
N. H. Tuan, H. Mohammadi, and S. Rezapour, “A mathematical model for COVID-19 transmission by using the Caputo fractional derivative,” Chaos, Solitons Fractals, vol. 140, p. 110107, 2020.
-
O. J. Peter, H. S. Panigoro, A. Abidemi, M. M. Ojo, and F. A. Oguntolu, “Mathematical model of COVID-19 pandemic with double dose vaccination,” Acta Biotheoretica, vol. 71, no. 2, p. 9, 2023.
-
K. Logeswari, C. Ravichandran, and K. S. Nisar, “Mathematical model for spreading of COVID‐19 virus with the Mittag–Leffler kernel,” Numerical. Methods Partial Differential Equations, vol. 40, no. 1, p. e22652, 2024.
-
A. Magadum and R. Kishore, “Cardiovascular manifestations of COVID-19 infection,” Cells, vol. 9, no. 11, p. 2508, 2020.
-
F. Özköse, M. Yavuz, M. T. Şenel, and R. Habbireeh, “Fractional order modelling of Omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom,” Chaos, Solitons Fractals, vol. 157, p. 111954, 2022.
-
A. Ahmad, S. Abbas, M. Inc, and A. Ghaffar, “Stability Analysis of SARS‐CoV‐2 with Heart Attack Effected Patients and Bifurcation,” Advanced Biology, vol. 8, no. 4, p. 2300540, 2024.
-
F. Evirgen, F. Özköse, M. Yavuz, and N. Özdemir, “Real data-based optimal control strategies for assessing the impact of the Omicron variant on heart attacks,” AIMS Bioengineering, vol. 10, no. 3, 2023.
-
P. Van den Driessche and J. Watmough, “Further notes on the basic reproduction number,” Mathematical Epidemiology, pp. 159–178, 2008.
-
J. H. Jones, “Notes on R0,” California: Dept. Anthropol. Sci., pp. 1–19, 2007.
-
J. Hefferman, R. Smith, and L. Wahl, “Perspectives on the basic reproduction ratio,” J. R. Soc. Interface, vol. 2, pp. 281–293, 2005.
-
C. Taş and R. Kara, “Modeling the Impact of Vaccination on Epidemic Disease Variants with Hospitalization: A Case Study for the COVID-19 Pandemic in Turkey,” Journal of the Institute of Science and Technology, vol. 14, no. 1, pp. 390–402, 2024.
-
J. C. Butcher, “Numerical methods for ordinary differential equations”, John Wiley Sons, 2016.
-
A. Gökçe, “Numerical bifurcation analysis for a prey-predator type interactions with a time lag and habitat complexity”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 1, pp. 57–66, 2021, DOI 10.17798/bitlisfen.840245.
-
I. T. Cetinkaya, M. Kocabiyik and M. Y. Ongun, “Stability analysis of discretized model of glucose-insulin homeostasis”, Celal Bayar University Journal of Science, vol. 17, no. 4, pp. 369-377, 2021, DOI 10.18466/cbayarfbe.838451.
-
M. Kocabiyik, “Nonstandard Discretization and Stability Analysis of a novel type Malaria-Ross Model”, Journal of the Institute of Science and Technology, vol. 12, no. 2, pp. 1023-1033, 2022, DOI 10.21597/jist.1026364.
-
M. Kocabiyik and M.Y. Ongun, “Construction a distributed order smoking model and its nonstandard finite difference discretization”, AIMS Mathematics, vol. 7, no. 3, pp. 4636-4654, 2022, DOI 10.3934/math.2022258.
-
M. Kocabiyik and M. Y. Ongun, “Discretization and Stability Analysis for a Generalized Type Nonlinear Pharmacokinetic Models”, Gazi University Journal of Science, vol. 36, no. 4, pp. 1675-1691, 2023, DOI 10.35378/gujs.1027381.
-
M. Kocabiyik, and M. Yakit Ongun, “Distributed order hantavirus model and its nonstandard discretizations and stability analysis”, Mathematical Methods in the Applied Sciences, vol. 48, no. 2, pp. 2404–2420, 2025, DOI 10.1002/mma.10442.
-
Z. Al Jammali and İ. Turhan Çetinkaya, “A Nonstandard Finite Difference Scheme for a Mathematical Model Presenting the Climate Change on the Oxygen-plankton System”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, pp. 798–807, 2024, doi: 10.17798/bitlisfen.1492437.
-
J. C. Butcher, "A history of Runge-Kutta methods", Applied numerical mathematics, vol. 20, pp. 247-260, 1996.