Derleme
BibTex RIS Kaynak Göster

Gravitasyonel Alan Denklemleri ve Özellikleri

Yıl 2019, , 706 - 712, 28.06.2019
https://doi.org/10.17798/bitlisfen.455368

Öz








Gravitasyonel etkileşimleri ve buna bağlı olarak evrenin yapısını açıklayan
genel görelilik teorisinin temel denklemleri olan ve 1915 yılında Einstein
tarafından elde edilen genel görelilik alan denklemlerinin kozmolojik sabit (λ
) içeren biçiminin çözümünün elde
edilmesinden buyana alan denklemlerinin
λ
kozmolojik terim ve















 evrensel gravitasyonel
sabitin değişimi ile birlikte düşünülmesi genel görelilik çerçevesinde oldukça
ilgi görmektedir.




Bu çalışmada, içerisinde bulunan kütle, enerji ve momentumun varlığıyla
eğrilen dört boyutlu bir Lorentz manifoldu olan uzay-zamanın eğriliği ile
enerji-momentum tensörü arasındaki bağıntının Einstein alan denklemi ile
sağlanacağı konusu incelenmiştir. Bu denklemlerin evrenin doğasını anlamaya yönelik
getireceği yenilikler üzerinde durulmuştur.
Bu bağlamda, evrenin ilk anlardaki (enflasyon evresi) fiziksel durumunun
anlaşılmasını sağlayan genel göreliliğin temel ilkelerine dayalı gravitasyonel
alan denklemleri kuramsal olarak irdelenmiştir. Ayrıca, son yıllarda tespit
edilmeye çalışılan gravitasyonel dalgalar genel görelilik çerçevesinde araştırılmış
ve bunların evrenin doğasını incelerken getirdiği yenilikler üzerinde durulmuştur.




Kaynakça

  • 5. KAYNAKLAR[1] Einstein A, 1961. Relativity: The Special and General Theory. Lawson No: 30, pp. 76-83, Crown-New York.
  • [2] Ohanian C, Ruffini R, 1994. Gravitation and Spacetime. W..Norton & Co No: 2, pp. 1-4, W.W.Norton-New York.
  • [3] Wald RM, 1984. General Relativity. University of Chicago No: 1, pp. 80-90, Chicago-London
  • [4] Bertolami O, 1986. Time-Dependent Cosmological Term. Il Nuovo Cimento B, 93 (1): 36-42
  • [5] Abdel-Rahman AMM, 1990. A Critical Density Cosmological Model with Varying Gravitational and Cosmological ‘‘Constants’’. General Relativity and Gravitation, 22 (6): 655-663.
  • [6] Bermann MS, 1990. Cosmological Models in General Relativity and Brans-Dicke Theories: A Comparison. General Relativity and Gravitation, 29 (6): 571-577.
  • [7] Abdussattar and Vishwakarma R.G, 1997. Some FRW Models with Variable G and Λ, Classical and Quantum Gravity, 14 (4): 945-953.
  • [8] Belinchon JA, 2000. Cosmological Models with Bulk Viscosity in the Presence of Adiabatic Matter Creation and with Variable g, c, and Λ. General Relativity and Gravitation, 32 (8): 1487-1498.
  • [9] Arbab IA, 1997. Cosmological Models with Variable Cosmological and Gravitational ‘‘Constants’’ and Bulk Viscous Models. General Relativity and Gravitation, 29 (1): 61-74.
  • [10] Sing T, Beesham A, 2000. Causal Viscous Cosmological Models With Variable G and Λ. General Relativity and Gravitation, 32 (4): 607-614.
  • [11] Salti M, Korunur M, Acikgoz I, 2014. Extended Ricci and holographic dark energy models in fractal Cosmology. Eur. Phys. J. Plus, 129, 95.
  • [12] Salti M, Yanar H, Aydogdu O, Sogut K, 2017. Logarithmic-corrected Ricci and modified Chaplygin gas dark energy models in fractal framework, Eur. Phys. J. Plus, 132, 225.
  • [13] Beesham A, 1994. Bianchi Type I Cosmological Models with Variable G and A. General Relativity and Gravitation, 26 (2): 159-165.
  • [14] Kalligas D, Wesson PS, Everitt CVF, 1995. Bianchi Type I Cosmological Models with Variable G and Λ: A Comment,. General Relativity and Gravitation, 27 (6): 645-650.
  • [15] Arbab IA, 1998. Bianchi Type I Viscous Universe with Variable G and Λ. General Relativity and Gravitation, 30 (9): 1401-1405.
  • [16] Beesham A, Ghost SG, Lombart RG, 2000. Anisotropic Viscous Cosmology with Variable G and Λ. General Relativity and Gravitation, 32 (3): 471-477.
  • [17] Salti M, 2014. Reconstruction of ghost scalar fields, Eur. Phys. J. Plus 129, 42.
  • [18] Weinberg S, 1972. Gravitation and Cosmology: Principles and Applications of The General Principle of Relativity. John Wiley & Sons, Inc No:1, pp. 151-155, Wiley-New York.
  • [19] Halliday D, Resnick R, Walker J, 2001. Gravitation and Spacetime. John Wiley & Sons, Inc No:3, pp. 94-331, Wiley-New York.
  • [20] Ray D, 1992. Introducing Einstein’s Relativity. Qxford University No: 4, pp. 36-37, Qxford-England.
  • [21] Connaughton V, Burns E, Goldstein A, Blackburn L, 2016. Fermi GBM Observations of LIGO Gravitational-Wave Event GW150914. The AstroPhysical Journal Letter, 826 (1): 2041-8205
Yıl 2019, , 706 - 712, 28.06.2019
https://doi.org/10.17798/bitlisfen.455368

Öz

Kaynakça

  • 5. KAYNAKLAR[1] Einstein A, 1961. Relativity: The Special and General Theory. Lawson No: 30, pp. 76-83, Crown-New York.
  • [2] Ohanian C, Ruffini R, 1994. Gravitation and Spacetime. W..Norton & Co No: 2, pp. 1-4, W.W.Norton-New York.
  • [3] Wald RM, 1984. General Relativity. University of Chicago No: 1, pp. 80-90, Chicago-London
  • [4] Bertolami O, 1986. Time-Dependent Cosmological Term. Il Nuovo Cimento B, 93 (1): 36-42
  • [5] Abdel-Rahman AMM, 1990. A Critical Density Cosmological Model with Varying Gravitational and Cosmological ‘‘Constants’’. General Relativity and Gravitation, 22 (6): 655-663.
  • [6] Bermann MS, 1990. Cosmological Models in General Relativity and Brans-Dicke Theories: A Comparison. General Relativity and Gravitation, 29 (6): 571-577.
  • [7] Abdussattar and Vishwakarma R.G, 1997. Some FRW Models with Variable G and Λ, Classical and Quantum Gravity, 14 (4): 945-953.
  • [8] Belinchon JA, 2000. Cosmological Models with Bulk Viscosity in the Presence of Adiabatic Matter Creation and with Variable g, c, and Λ. General Relativity and Gravitation, 32 (8): 1487-1498.
  • [9] Arbab IA, 1997. Cosmological Models with Variable Cosmological and Gravitational ‘‘Constants’’ and Bulk Viscous Models. General Relativity and Gravitation, 29 (1): 61-74.
  • [10] Sing T, Beesham A, 2000. Causal Viscous Cosmological Models With Variable G and Λ. General Relativity and Gravitation, 32 (4): 607-614.
  • [11] Salti M, Korunur M, Acikgoz I, 2014. Extended Ricci and holographic dark energy models in fractal Cosmology. Eur. Phys. J. Plus, 129, 95.
  • [12] Salti M, Yanar H, Aydogdu O, Sogut K, 2017. Logarithmic-corrected Ricci and modified Chaplygin gas dark energy models in fractal framework, Eur. Phys. J. Plus, 132, 225.
  • [13] Beesham A, 1994. Bianchi Type I Cosmological Models with Variable G and A. General Relativity and Gravitation, 26 (2): 159-165.
  • [14] Kalligas D, Wesson PS, Everitt CVF, 1995. Bianchi Type I Cosmological Models with Variable G and Λ: A Comment,. General Relativity and Gravitation, 27 (6): 645-650.
  • [15] Arbab IA, 1998. Bianchi Type I Viscous Universe with Variable G and Λ. General Relativity and Gravitation, 30 (9): 1401-1405.
  • [16] Beesham A, Ghost SG, Lombart RG, 2000. Anisotropic Viscous Cosmology with Variable G and Λ. General Relativity and Gravitation, 32 (3): 471-477.
  • [17] Salti M, 2014. Reconstruction of ghost scalar fields, Eur. Phys. J. Plus 129, 42.
  • [18] Weinberg S, 1972. Gravitation and Cosmology: Principles and Applications of The General Principle of Relativity. John Wiley & Sons, Inc No:1, pp. 151-155, Wiley-New York.
  • [19] Halliday D, Resnick R, Walker J, 2001. Gravitation and Spacetime. John Wiley & Sons, Inc No:3, pp. 94-331, Wiley-New York.
  • [20] Ray D, 1992. Introducing Einstein’s Relativity. Qxford University No: 4, pp. 36-37, Qxford-England.
  • [21] Connaughton V, Burns E, Goldstein A, Blackburn L, 2016. Fermi GBM Observations of LIGO Gravitational-Wave Event GW150914. The AstroPhysical Journal Letter, 826 (1): 2041-8205
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Düzeltme Makalesi
Yazarlar

Şilan Baturay

Figen Binbay 0000-0002-1390-4151

Yayımlanma Tarihi 28 Haziran 2019
Gönderilme Tarihi 27 Ağustos 2018
Kabul Tarihi 13 Mart 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE Ş. Baturay ve F. Binbay, “Gravitasyonel Alan Denklemleri ve Özellikleri”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 8, sy. 2, ss. 706–712, 2019, doi: 10.17798/bitlisfen.455368.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr