Araştırma Makalesi
BibTex RIS Kaynak Göster

PECVD Yöntemi ile Polimerik Hidrojel İnce Filmlerin Üretimi

Yıl 2019, , 1019 - 1028, 30.09.2019
https://doi.org/10.17798/bitlisfen.527902

Öz

Bu çalışma ile ilk kez hidrojel özellikteki PHPMA (poli(hidroksipropil metakrilat)) ince filmleri gaz fazı bir yöntem olan plazma destekli kimyasal buhar biriktirme (PECVD) yöntemi ile üretilmiştir. Substrat sıcaklığının, reaktör basıncının ve plazma gücünün, PHPMA ince filmlerinin kaplama hızları üzerine etkileri incelenmiştir. PECVD parametrelerinin, PHPMA ince filmlerinin morfolojileri, kimyasal yapıları ve ıslanabilirlik özellikleri üzerine etkileri açığa çıkarılmıştır. Ayrıca, bu çalışma kapsamında PHPMA ince filmlerinin, kaplama mekanizması ve kinetiği de incelenmiştir. En yüksek kaplama hızı (120,2 nm/dk) 20 °C substrat sıcaklığında, 250 mtorr reaktör basıncında ve 20 W plazma gücündeelde edilmiştir. PHPMA kaplamasının aktivasyon enerjisi -22,16 kJ/mol olarak bulunmuştur. 

Kaynakça

  • Caliari S.R., Burdick J.A. 2016. A practical guide to hydrogels for cell culture, Nature methods, 13 (5): 405-414.
  • Ullah F., Othman M.B.H., Javed F., Ahmad Z., Akil H.M. 2015. Classification, processing and application of hydrogels: A review, Materials Science and Engineering: C, 57: 414-433.
  • Ghobril C., Grinstaff M. 2015. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial, Chemical Society Reviews, 44(7): 1820-1835.
  • Caló E., Khutoryanskiy V.V. 2015. Biomedical applications of hydrogels: A review of patents and commercial products, European Polymer Journal, 65: 252-267.
  • Ahmed E.M. 2015. Hydrogel: Preparation, characterization, and applications: A review, Journal of advanced research, 6(2): 105-121.
  • Green J.J., Elisseeff J.H. 2016. Mimicking biological functionality with polymers for biomedical applications, Nature, 540(7633): 386-394.
  • Wei, M., Gao Y., Li X., Serpe M.J. 2017. Stimuli-responsive polymers and their applications, Polymer Chemistry, 8(1): 127-143.
  • Tokarev I., Minko S. 2009. Stimuli-responsive hydrogel thin films, Soft Matter, 5(3): 511-524.
  • Marí‐Buyé N., O'Shaughnessy S., Colominas C., Semino C.E., Gleason K.K., Borrós S. 2009. Functionalized, swellable hydrogel layers as a platform for cell studies, Advanced functional materials, 19(8): 1276-1286.
  • Schmaljohann D. 2006. Thermo-and pH-responsive polymers in drug delivery, Advanced drug delivery reviews, 58(15): 1655-1670.
  • Karaman M., Gürsoy M. 2017. Surface Treatments for Biological, Chemical, and Physical Applications, John Wiley & Sons, Weinheim, Almanya.
  • Hilding J., Grulke E.A., George Zhang Z., Lockwood F. 2003. Dispersion of Carbon Nanotubes in Liquids, Journal of Dispersion Science and Technology, 24(1): 1-41.
  • Chen C., Chen X., Xu L., Yang Z., Li W. 2005. Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive, Carbon, 43(8): 1660-1666.
  • Virendra K., Jerome P., Hubert R., Ilaria M., Francois R., Farzaneh A.-K. 2010. Fluorocarbon Coatings Via Plasma Enhanced Chemical Vapor Deposition of 1H,1H,2H,2H-perfluorodecyl Acrylate - 2, Morphology, Wettability and Antifouling Characterization, Plasma Processes and Polymers, 7(11): 926-938.
  • Gürsoy M., Karaman M. 2018. Improvement of wetting properties of expanded perlite particles by an organic conformal coating, Progress in Organic Coatings, 120: 190-197.
  • Peri S.R., Habersberger B., Akgun B., Jiang H., Enlow J., Bunning T.J., Majkrzak C.F., Foster M.D. 2010. Variations in cross-link density with deposition pressure in ultrathin plasma polymerized benzene and octafluorocyclobutane films, Polymer, 51(19): 4390-4397.
  • Tourrette A., De Geyter N., Jocic D., Morent R., Warmoeskerken M.M., Leys C. 2009. Incorporation of poly (N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface, Colloids and surfaces A: Physicochemical and engineering aspects, 352(1-3): 126-135.
  • Gürsoy M., Karaman M. 2016. Hydrophobic Coating of Expanded Perlite Particles by Plasma Polymerization, Chemical Engineering Journal, 284: 343-350.
  • Pathak S.C., Hess D.W. 2008. Dissolution and swelling behaviour of plasma-polymerized polyethylene glycol-like hydrogel films for use as drug delivery reservoirs, ECS Transactions, 6(20): 1-12.
  • Seah M. 1981. Pure element sputtering yields using 500–1000 eV argon ions, Thin Solid Films, 81(3): 279-287.
  • Demircioğlu Z., Özkol E., Nasser H., Turan R. 2015. Low temperature aluminum doped zinc oxide thin film deposition on ultra‐thin flexible glass and PET substrates by RF magnetron sputtering, physica status solidi (c), 12(9‐11): 1215-1219.
  • d’Agostino R., Cramarossa F., Fracassi F., Illuzzi F. 1990. Plasma polymerization of fluorocarbons, Plasma Deposition, Treatment, and Etching of Polymers, 2: 95-162.
  • Gürsoy, M., Karaman, M. 2015. Effect of substrate temperature on initiated plasma enhanced chemical vapor deposition of PHEMA thin films, physica status solidi (c), 12 (7): 1006-1010.
  • Gürsoy M., Ucar T., Tosun Z., Karaman M. 2016. Initiation of 2-Hydroxyethyl Methacrylate Polymerization by Tert-Butyl Peroxide in a Planar PECVD System, Plasma Processes and Polymers, 13(4): 438-446.
  • Cassie A., Baxter S. 1944. Wettability of porous surfaces, Transactions of the Faraday society, 40: 546-551.
  • Wenzel R.N. 1949. Surface Roughness and Contact Angle, The Journal of Physical and Colloid Chemistry, 53(9): 1466-1467.

Synthesis of Polymeric Hydrogel Thin Films by PECVD Method

Yıl 2019, , 1019 - 1028, 30.09.2019
https://doi.org/10.17798/bitlisfen.527902

Öz

In this study, for the first time, PHPMA (poly (hydroxypropyl methacrylate)) thin films, which have hydrogel properties, were synthesized by gas phase plasma enhanced chemical vapor deposition (PECVD) method. The effects of substrate temperature, reactor pressure and plasma power on the deposition rates of PHPMA thin films were investigated. The effect of PECVD parameters on the morphology, chemical structure and wettability properties of PHPMA thin films were revealed. Furthermore, the deposition mechanisms and kinetics of PHPMA thin films were also investigated in this study. The highest deposition rate (120.2 nm/min) was obtained at the substrate temperature of 20 °C, reactor pressure of 250 mtorr and plasma power of 20 W. The activation energy of PHPMA deposition was found to be -22.16 kJ / mol.

Kaynakça

  • Caliari S.R., Burdick J.A. 2016. A practical guide to hydrogels for cell culture, Nature methods, 13 (5): 405-414.
  • Ullah F., Othman M.B.H., Javed F., Ahmad Z., Akil H.M. 2015. Classification, processing and application of hydrogels: A review, Materials Science and Engineering: C, 57: 414-433.
  • Ghobril C., Grinstaff M. 2015. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial, Chemical Society Reviews, 44(7): 1820-1835.
  • Caló E., Khutoryanskiy V.V. 2015. Biomedical applications of hydrogels: A review of patents and commercial products, European Polymer Journal, 65: 252-267.
  • Ahmed E.M. 2015. Hydrogel: Preparation, characterization, and applications: A review, Journal of advanced research, 6(2): 105-121.
  • Green J.J., Elisseeff J.H. 2016. Mimicking biological functionality with polymers for biomedical applications, Nature, 540(7633): 386-394.
  • Wei, M., Gao Y., Li X., Serpe M.J. 2017. Stimuli-responsive polymers and their applications, Polymer Chemistry, 8(1): 127-143.
  • Tokarev I., Minko S. 2009. Stimuli-responsive hydrogel thin films, Soft Matter, 5(3): 511-524.
  • Marí‐Buyé N., O'Shaughnessy S., Colominas C., Semino C.E., Gleason K.K., Borrós S. 2009. Functionalized, swellable hydrogel layers as a platform for cell studies, Advanced functional materials, 19(8): 1276-1286.
  • Schmaljohann D. 2006. Thermo-and pH-responsive polymers in drug delivery, Advanced drug delivery reviews, 58(15): 1655-1670.
  • Karaman M., Gürsoy M. 2017. Surface Treatments for Biological, Chemical, and Physical Applications, John Wiley & Sons, Weinheim, Almanya.
  • Hilding J., Grulke E.A., George Zhang Z., Lockwood F. 2003. Dispersion of Carbon Nanotubes in Liquids, Journal of Dispersion Science and Technology, 24(1): 1-41.
  • Chen C., Chen X., Xu L., Yang Z., Li W. 2005. Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive, Carbon, 43(8): 1660-1666.
  • Virendra K., Jerome P., Hubert R., Ilaria M., Francois R., Farzaneh A.-K. 2010. Fluorocarbon Coatings Via Plasma Enhanced Chemical Vapor Deposition of 1H,1H,2H,2H-perfluorodecyl Acrylate - 2, Morphology, Wettability and Antifouling Characterization, Plasma Processes and Polymers, 7(11): 926-938.
  • Gürsoy M., Karaman M. 2018. Improvement of wetting properties of expanded perlite particles by an organic conformal coating, Progress in Organic Coatings, 120: 190-197.
  • Peri S.R., Habersberger B., Akgun B., Jiang H., Enlow J., Bunning T.J., Majkrzak C.F., Foster M.D. 2010. Variations in cross-link density with deposition pressure in ultrathin plasma polymerized benzene and octafluorocyclobutane films, Polymer, 51(19): 4390-4397.
  • Tourrette A., De Geyter N., Jocic D., Morent R., Warmoeskerken M.M., Leys C. 2009. Incorporation of poly (N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface, Colloids and surfaces A: Physicochemical and engineering aspects, 352(1-3): 126-135.
  • Gürsoy M., Karaman M. 2016. Hydrophobic Coating of Expanded Perlite Particles by Plasma Polymerization, Chemical Engineering Journal, 284: 343-350.
  • Pathak S.C., Hess D.W. 2008. Dissolution and swelling behaviour of plasma-polymerized polyethylene glycol-like hydrogel films for use as drug delivery reservoirs, ECS Transactions, 6(20): 1-12.
  • Seah M. 1981. Pure element sputtering yields using 500–1000 eV argon ions, Thin Solid Films, 81(3): 279-287.
  • Demircioğlu Z., Özkol E., Nasser H., Turan R. 2015. Low temperature aluminum doped zinc oxide thin film deposition on ultra‐thin flexible glass and PET substrates by RF magnetron sputtering, physica status solidi (c), 12(9‐11): 1215-1219.
  • d’Agostino R., Cramarossa F., Fracassi F., Illuzzi F. 1990. Plasma polymerization of fluorocarbons, Plasma Deposition, Treatment, and Etching of Polymers, 2: 95-162.
  • Gürsoy, M., Karaman, M. 2015. Effect of substrate temperature on initiated plasma enhanced chemical vapor deposition of PHEMA thin films, physica status solidi (c), 12 (7): 1006-1010.
  • Gürsoy M., Ucar T., Tosun Z., Karaman M. 2016. Initiation of 2-Hydroxyethyl Methacrylate Polymerization by Tert-Butyl Peroxide in a Planar PECVD System, Plasma Processes and Polymers, 13(4): 438-446.
  • Cassie A., Baxter S. 1944. Wettability of porous surfaces, Transactions of the Faraday society, 40: 546-551.
  • Wenzel R.N. 1949. Surface Roughness and Contact Angle, The Journal of Physical and Colloid Chemistry, 53(9): 1466-1467.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Gürsoy 0000-0003-2275-9096

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 15 Şubat 2019
Kabul Tarihi 1 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE M. Gürsoy, “PECVD Yöntemi ile Polimerik Hidrojel İnce Filmlerin Üretimi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 8, sy. 3, ss. 1019–1028, 2019, doi: 10.17798/bitlisfen.527902.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr