Araştırma Makalesi
BibTex RIS Kaynak Göster

A computational approach for solving second-order nonlinear ordinary differential equations by means of Laguerre series

Yıl 2020, , 78 - 84, 13.03.2020
https://doi.org/10.17798/bitlisfen.576189

Öz

In this work, a novel efficient numeric procedure for obtaining the approximate solution of a class of second-order nonlinear ordinary differential equations is presented which play a significant part in science and engineering branches. The technique is based on matrix equations and collocation points with truncated Laguerre series. The acquired approximate solutions subject to initial conditions are obtained in terms of Laguerre polynomials. Also, some examples together with error analysis techniques are acquired to demonstrate the efficacy of the present method, and the comparisons are made with current studies.

Kaynakça

  • Fried I. 1979. Numerical Solution of Differential Equations, Academic Press, NY, 1079.
  • Gürbüz B., Sezer M. 2016. Laguerre polynomial solutions of a class of initial and boundary value problems arising in science and engineering fields, Acta Phys. Pol., A 129(1): 194-197. DOI:10.12693/APhysPolA.130.194.
  • Gürbüz B., Sezer M. 2017. A numerical solution of parabolic-type Volterra partial integro-differential equations by Laguerre collocation method, IJAPM 7(1): 49-58. DOI:10.17706/ijapm.2017.7.1.49-58A.
  • Jordan D. W., Smith P. 2007. Nonlinear Ordinary Differential Equations: An introduction for Scientists and Engineers, 4th Edition. Oxford University Press, NY.
  • King A. C., Billingham J., Otto S. R. 2003. Differential Equations: Linear, Nonlinear, Ordinary, Partial, Cambridge University Press, NY.

İkinci mertebeden lineer olmayan adi diferansiyel denklemlerin Laguerre serileri ile çözümü için hesaplamalı bir yaklaşım

Yıl 2020, , 78 - 84, 13.03.2020
https://doi.org/10.17798/bitlisfen.576189

Öz

Bu çalışmada, fen ve mühendislik dallarında önemli bir rol oynayan ikinci dereceden doğrusal olmayan adi diferansiyel denklemlerin bir sınıfının yaklaşık çözümünü elde etmek için yeni ve etkili bir sayısal prosedür sunulmuştur. Teknik, matris denklemlerine ve kesilmiş Laguerre serileri ile sıralama noktalarına dayanmaktadır. Başlangıç koşullarına tabi olarak elde edilen yaklaşık çözümler, Laguerre polinomları tarafından elde edilir. Ayrıca, mevcut yöntemin etkinliğini ortaya koymak için hata analizi teknikleri ile birlikte bazı örnekler alınmış ve güncel çalışmalar ile karşılaştırmalar yapılmıştır.

Kaynakça

  • Fried I. 1979. Numerical Solution of Differential Equations, Academic Press, NY, 1079.
  • Gürbüz B., Sezer M. 2016. Laguerre polynomial solutions of a class of initial and boundary value problems arising in science and engineering fields, Acta Phys. Pol., A 129(1): 194-197. DOI:10.12693/APhysPolA.130.194.
  • Gürbüz B., Sezer M. 2017. A numerical solution of parabolic-type Volterra partial integro-differential equations by Laguerre collocation method, IJAPM 7(1): 49-58. DOI:10.17706/ijapm.2017.7.1.49-58A.
  • Jordan D. W., Smith P. 2007. Nonlinear Ordinary Differential Equations: An introduction for Scientists and Engineers, 4th Edition. Oxford University Press, NY.
  • King A. C., Billingham J., Otto S. R. 2003. Differential Equations: Linear, Nonlinear, Ordinary, Partial, Cambridge University Press, NY.
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Burcu Gürbüz 0000-0002-4253-5877

Yayımlanma Tarihi 13 Mart 2020
Gönderilme Tarihi 11 Haziran 2019
Kabul Tarihi 19 Eylül 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE B. Gürbüz, “A computational approach for solving second-order nonlinear ordinary differential equations by means of Laguerre series”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 9, sy. 1, ss. 78–84, 2020, doi: 10.17798/bitlisfen.576189.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr