Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğal Kabak Çekirdeği Kabuğunun Bor Adsorpsiyon Kapasitesi

Yıl 2020, , 1698 - 1710, 25.12.2020
https://doi.org/10.17798/bitlisfen.667331

Öz

Endüstriyel gelişmelere bağlı olarak birçok sanayide ve yüzey sularında kullanılan bor bileşiklerinin konsantrasyonu artmaktadır. Bu nedenle bor giderimi hem insan sağlığı hem de sağlıklı tarım ürünü yetiştirilebilmesi açısından oldukça önemlidir. Bu çalışmada, kabak çekirdeği kabuğunun adsorpsiyon kapasitesi araştırılmıştır. Çalışma için, çözeltinin pH‘sının, kabak çekirdeği kabuğu konsantrasyonlarının ve temas süresinin adsorpsiyon sürecine etkisi sabit bir karıştırma hızı (150 rpm) ve sıcaklığı (20 0C) altında değerlendirilmiştir. Ayrıca, kabak çekirdeği kabuğu, taramalı elektron mikroskobu, X ışını floresansı ve Fourier dönüşümü kızılötesi teknikleri kullanılarak tanımlanmıştır. Elde edilen deneysel veriler kesikli proseste farklı izoterm ve kinetik modelleri kullanılarak analiz edilmiştir. Adsorpsiyon işlemi için optimum koşullar adsorbent dozu = 2 g/L, pH = 5.13 ve temas süresi = 5 dakika olarak belirlenmiştir. Kabak çekirdeği kabuğunun maksimum bor arıtma verimi, ideal şartlarda yaklaşık % 88 olarak elde edilmiştir. Langmuir izotermine dayalı maksimum adsorpsiyon kapasitesi 12.61 mg/g şeklinde olup bor elementinin kabak çekirdeği kabuğu üzerine adsorpsiyonu yalancı ikinci derece kinetik ile tanımlanmıştır. Sonuç olarak, bor elementinin, kabak çekirdeği kabuğu kullanılarak sulu çözeltiden etkili bir şekilde çıkarılabileceği kaydedilmiştir.

Kaynakça

  • 1. Türker O.C., Yakar A., Türe C., Saz Ç. 2019. Cost-Effectiveness of Boron (B) Removal from İrrigation Water: An Economic Water Treatment Model (EWTM) for Farmers to Prevent Boron Toxicity, Environmental Science and Pollution Research, 26: 18777-18789.
  • 2. Güven E.D., Güler E., Akıncı G., Bölükbaş A. 2017. Influencing Factors in the Removal of High Concentrations of Boron by Electrocoagulation, Journal of Hazardous, Toxic, and Radioactive Waste, 22(2): 04017031.
  • 3. Simcox L., A. Pereira RP., Wellington EM., Macpherson JV. 2019. Boron Doped Diamond as a Low Biofouling Material in Aquatic Environments: Assessment of Pseudomonas Aeruginosa Biofilm Formation, ACS Applied Materials & Interfaces, 11: 25024-25033.
  • 4. Helvacı C. (2015). Bor Yataklarının Mineral ve Kimyası Yönünden Genel Değerlendirilmesi ve Gelecek Öngörüsü, Madencilik ve Yerbilimleri Dergisi, 6(47): 66-78.
  • 5. Tagliabue M., Reverber A.P., Bagatin R. 2014. Boron Removal from Water: Needs, Challenges and Perspectives, Journal of Cleaner Production, 77: 56-64.
  • 6. Sönmez NA. 2014. Sulardan Adsorpsiyon Yöntemi ile Bor Giderimi. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 91s, Denizli.
  • 7. Kabay N., Bryjak M., Hilal N. 2015. Boron separation processes. Elsevier Publisher, Amsterdam.
  • 8. Tombal TD., Özkan ŞG., Ünver İK., Osmanlıoğlu AE. 2016. Bor Bileşiklerinin Özellikleri, Üretimi, Kullanımı ve Nükleer Reaktör Teknolojisinde Önemi, Journal of Boron, 1(2): 86-95.
  • 9. Arıkan T. 2019. Sulu Çözeltideki Bor İyonlarının Sepiyolit ile Giderimi, KSÜ Tarim ve Doga Dergisi, 22(2): 333-338.
  • 10. Başkan MB., Atalay N. 2014. İçme ve Sulama Sularında Bor Kirliliği ve Bor Giderme Yöntemleri, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 20(3): 78-84.
  • 11. WHO. 2011. http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf. (Erişim Tarihi: 29 Aralık 2019).
  • 12. EU. 1998. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31998L0083 (Erişim Tarihi: 29 Aralık 2019).
  • 13. Jung J., Choi H., Hong S., Yoon S.J., Kim T.H., Lee J.Y., Hong Y.T., So S. 2020. Surface-Initiated ATRP of Glycidyl Methacrylate in the Presence of Divinylbenzene on Porous Polystyrene-Based Resins for Boron Adsorption, Desalination, 473: 114166.
  • 14. Weidner E., Ciesielczyk F. 2019. Removal of Hazardous Oxyanions from the Environment Using Metal-Oxide-Based Materials, Materials, 12(6): 927.
  • 15. Tulun Ş., Bahadır T., Şimşek İ., Karataş M. 2019. The Removal of Nickel Ions with Walnut Shell, Turkish Journal of Engineering, 3(2): 102-105.
  • 16. Meng F., Ma W., Wu L., Hao H., Xin L., Chen Z., Wang M. 2018. Selective and Efficient Adsorption of Boron (III) from Water by 3D Porous CQDs/LDHs with Oxygen-Rich Functional Groups, Journal of the Taiwan Institute of Chemical Engineers, 83: 192-203.
  • 17. Türker O.C., Baran T. 2017. Evaluation and Application of an Innovative Method Based on Various Chitosan Composites and Lemna gibba for Boron Removal from Drinking Water, Carbohydrate Polymers, 166: 209-218.
  • 18. Wolska J., Bryjak M. 2013. Methods for Boron Removal from Aqueous Solution-a Review, Desalination, 310: 18-24.
  • 19. Türker O.C., Baran T. 2018. A Combination Method Based on Chitosan Adsorption and Duckweed (Lemna gibba L.) Phytoremediation for Boron (B) Removal from Drinking Water, International journal of phytoremediation, 20(2): 175-183.
  • 20. Deniz F., Akarsu C. 2018. Operating Cost and Treatment of Boron from Aqueous Solutions by Electrocoagulation in Low Concentration, Global Challenges, 2(5-6): 1800011.
  • 21. Guan Z., Lv J., Bai P., Guo X. 2016. Boron Removal from Aqueous Solutions by Adsorption-a Review, Desalination, 383: 29-37.
  • 22. Al Haddabi M., Ahmed M., Al. Jebri Z., Vuthaluru H., Znad H., Al. Kindi M. 2016. Boron Removal from Seawater Using Date Palm (Phoenix dactylifera) Seed Ash, Desalination and Water Treatment, 57(11): 5130-5137.
  • 23. Xi Z., Qilong R., Yiwen Y., Huabin X., Baogen S., Zongbi B. (2015). Materials for Boron Adsoprtion, Progress in Chemistry, 27(1): 125-134.
  • 24. Shireen F., Nawaz M.A., Chen C., Zhang Q., Zheng Z., Sohail H., Sun J., Cao H., Huang Y., Bie Z. 2018. Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture, International Journal of Molecular Sciences, 19(7): 1856.
  • 25. Laçin B., Ertit Taştan B., Dönmez G. 2015. Detection of Boron Removal Capacities of Different Microorganisms in Wastewater and Effective Removal Process, Water Science and Technology, 72(10): 1832-1839.
  • 26. Çelebi H. 2019. The Applicability of Evaluable Wastes for the Adsorption of Reactive Black 5, International Journal of Environmental Science and Technology, 16(1): 135-146.
  • 27. Roongruangsri W., Bronlund J.E. 2016. Effect of Air-Drying Temperature on Physico-Chemical, Powder Properties and Sorption Characteristics of Pumpkin Powders, International Food Research Journal, 23: 962-972.
  • 28. Njoku V.O., Foo K.Y., Hameed B.H. 2013. Microwave-Assisted Preparation of Pumpkin Seed Hull Activated Carbon and Its Application for the Adsorptive Removal of 2, 4-Dichlorophenoxyacetic Acid, Chemical Engineering Journal, 215: 383-388.
  • 29. Kluczka J., Pudlo W., Krukiewicz K. 2019. Boron Adsorption Removal by Commercial and Modified Activated Carbons, Chemical Engineering Research and Design, 147: 30-42.
  • 30. Sun L., Huang J., Liu H., Zhang Y., Ye X., Zhang H., Wu A., Wu Z. 2018. Adsorption of Boron by CA@ KH-550@ EPH@ NMDG (CKEN) with Biomass Carbonaceous Aerogels as Substrate, Journal of Hazardous Materials, 358: 10-19.
  • 31. Kluczka J., Gnus M., Kazek-Kęsik A., Dudek G. 2018. Zirconium-Chitosan Hydrogel Beads for Removal of Boron from Aqueous Solutions, Polymer, 150: 109-118.
  • 32. Sarri S., Misaelides P., Zamboulis D., Warchoł J. 2018. Boron Removal from Aqueous Solutions by a Polyethylenimine-Epichlorohydrin Resin, Journal of the Serbian Chemical Society, 83(2): 251-264.
  • 33. Chen T., Wang Q., Lyu J., Bai P., Guo X. 2020. Boron Removal and Reclamation by Magnetic Magnetite (Fe3O4) Nanoparticle: an Adsorption and Isotopic Separation Study, Separation and Purification Technology, 231: 115930.
  • 34. Sanfeliu C., Martínez-Máñez R., Sancenón F., Soto J., Amorós P., Azaïs T., Marcos M.D. 2018. 11B-MAS NMR Approach to the Boron Adsorption Mechanism on a Glucose-Functionalised Mesoporous Silica Matrix, Microporous and Mesoporous Materials, 266: 232-241.
  • 35. Jaouadi M., Hbaieb S., Guedidi H., Reinert L., Amdouni N., Duclaux L. 2017. Preparation and Characterization of Carbons from β-cyclodextrin Dehydration and from Olive Pomace Activation and Their Application for Boron Adsorption, Journal of Saudi Chemical Society, 21(7): 822-829.
  • 36. Kluczka J., Dudek G., Kazek-Kęsik A., Gnus M. 2019. Chitosan Hydrogel Beads Supported with Ceria for Boron Removal, International Journal of Molecular Sciences, 20(7): 1567.
  • 37. Tlili A., Dridi I., Attaya R., Gueddari M. 2019. Boron Characterization, Distribution in Particle-Size Fractions, and Its Adsorption-Desorption Process in a Semiarid Tunisian Soil, Journal of Chemistry, 2019: 1-8.
  • 38. Nozawa S., Sato T., Otake T. 2018. Effect of Dissolved Silica on Immobilization of Boron by Magnesium Oxide, Minerals, 8(2): 76.
  • 39. Montalvo Andia J.P., Yokoyama L., Teixeir, C., Alberto L. 2018. Study of the Equilibrium, Kinetics, and Thermodynamics of Boron Removal from Waters with Commercial Magnesium Oxide, International Journal of Chemical Engineering, 2018: 1-10.
  • 40. Bodzek M. 2016. The Removal of Boron from the Aquatic Environment-State of the Art, Desalination and Water Treatment, 57(3): 1107-1131.
  • 41. Kluczka J., Trojanowska J., Zołotajkin M. 2015. Utilization of Fly Ash Zeolite for Boron Removal from Aqueous Solution, Desalination and Water Treatment, 54(7): 1839-1849.
  • 42. Affam A.C., Wong C.C., Seyam M.A., Matt C.A.A.F., Sumbai J.L.A., Evut, A.M. 2018. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron Oxide Composite for the Removal of Boron and Organics from Wastewater, E3S Web of Conferences 34: 02006.
  • 43. Tang Y.P., Luo L., Thong Z., Chung T.S. 2017. Recent Advances in Membrane Materials and Technologies for Boron Removal, Journal of Membrane Science, 541: 434-446.
  • 44. Bertagnolli C., Grishin A., Vincent T., Guibal, E. 2017. Boron Removal by a Composite Sorbent: Polyethylenimine/Tannic Acid Derivative Immobilized in Alginate Hydrogel Beads, Journal of Environmental Science and Health, Part A, 52(4): 359-367.
  • 45. Kluczka J., Gnus M., Dudek G., Turczyn R. 2017. Removal of Boron from Aqueous Solution by Composite Chitosan Beads, Separation Science and Technology, 52(9): 1559-1571.
  • 46. Abdelnour S.A., El-Hack M.E.A., Swelum A.A., Perillo A., Losacco C. 2018. The Vital Roles of Boron in Animal Health and Production: A Comprehensive Review, Journal of Trace Elements in Medicine and Biology, 50: 296-304.
  • 47. Demirçivi P., Saygılı G.N. 2018). Comparative Study of Modified Expanded Perlite with Hexadecyltrimethylammonium-Bromide and Gallic Acid for Boron Adsorption, Journal of Molecular Liquids, 254: 383-390.
  • 48. Al-Ghouti M.A., Salih N.R. 2018. Application of Eggshell Wastes for Boron Remediation from Water, Journal of Molecular Liquids, 256: 599-610.
  • 49. Wang J., Zhuang S. 2017. Removal of Various Pollutants from Water and Wastewater by Modified Chitosan Adsorbents, Critical Reviews in Environmental Science and Technology, 47(23): 2331-2386.
  • 50. Ho Y.S., McKay G. 1999. Pseudo-Second Order Model for Sorption Processes, Process biochemistry, 34(5): 451-465.
  • 51. Hall K.R., Eagleton L.C., Acrivos A., Vermeulen T. 1966. Pore-and Solid-Diffusion Kinetics in Fixed-Bed Adsorption Under Constant-Pattern Conditions, Industrial & Engineering Chemistry Fundamentals, 5(2): 212-223.
  • 52. Dubinin M.M., Radushkevich L.V. 1947. Equation of the Characteristic Curve of Activated Charcoal, Proceedings of the Academy of Sciences, Physical Chemistry Section, 55: 331-337.
  • 53. Temkin M., Pyzhev V. 1940. Recent Modifications to Langmuir Isotherms, Acta Physical Chemistry, 12: 217-225.
  • 54. Langmuir I. 1916. The Constitution and Fundamental Properties of Solids and Liquids Part I. Solids, Journal of the American Chemical Society, 38(11): 2221-2295.
  • 55. Freundlich H.M.F. 1906. Uber Die Adsorption in Lasungen, Journal of Physical Chemistry, 57: 370-385.
  • 56. Zhang J., Cai Y., Liu, K. 2019. Extremely Effective Boron Removal from Water by Stable Metal Organic Framework ZIF-67, Industrial & Engineering Chemistry Research, 58(10): 4199-4207.
  • 57. Babiker E., Al-Ghouti M.A., Zouari N., McKay G. 2019. Removal of Boron from Water Using Adsorbents Derived from Waste Tire Rubber, Journal of Environmental Chemical Engineering, 7(2): 102948.
  • 58. Kluczka J., Dudek G., Kazek-Kęsik A., Gnus M., Krzywiecki M., Mitko K., Krukiewicz K. 2019. The Use of Lanthanum Ions and Chitosan for Boron Elimination from Aqueous Solutions, Polymers, 11(4): 718.
  • 59. Duran H., Yavuz E., Sismanoglu T., Senkal B.F. 2019. Functionalization of Gum Arabic Including Glycoprotein and Polysaccharides for the Removal of Boron, Carbohydrate polymers, 225: 115139.
  • 60. Demey H., Barron-Zambrano J., Mhadhbi T., Miloudi H., Yang Z., Ruiz M., Sastre A.M. 2019. Boron Removal from Aqueous Solutions by Using a Novel Alginate-Based Sorbent: Comparison with Al2O3 Particles, Polymers, 11(9): 1509.
  • 61. Yüksel S., Yürüm Y. 2009. Removal of Boron from Aqueous Solutions by Adsorption Using Fly Ash, Zeolite, and Demineralized Lignite, Separation Science and Technology, 45(1): 105-115.
  • 62. Irawan C., Liu J.C., Wu C.C. 2011. Removal of Boron Using Aluminum-Based Water Treatment Residuals (Al-WTRs), Desalination, 276(1-3): 322-327.
  • 63. Chieng H.J., Chong M.F. 2013. Boron Adsorption on Palm Oil Mill Boiler (POMB) Ash Impregnated with Chemical Compounds, Industrial & Engineering Chemistry Research, 52(41): 14658-14670.
  • 64. Jalali M., Rajabi F., Ranjbar, F. 2016. The Removal of Boron from Aqueous Solutions Using Natural and Chemically Modified Sorbents, Desalination and Water Treatment, 57(18): 8278-8288.
  • 65. Masindi V., Gitari M.W., Tutu H., Debeer M. 2016. Removal of Boron from Aqueous Solution Using Magnesite and Bentonite Clay Composite, Desalination and Water Treatment, 57(19): 8754-8764.
  • 66. Bursalı E.A., Seki Y., Seyhan S., Delener M., Yurdakoç M. 2011. Synthesis of Chitosan Beads as Boron Sorbents, Journal of Applied Polymer Science, 122(1): 657-665.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hakan Çelebi 0000-0002-7726-128X

Yayımlanma Tarihi 25 Aralık 2020
Gönderilme Tarihi 30 Aralık 2019
Kabul Tarihi 27 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

IEEE H. Çelebi, “Doğal Kabak Çekirdeği Kabuğunun Bor Adsorpsiyon Kapasitesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 9, sy. 4, ss. 1698–1710, 2020, doi: 10.17798/bitlisfen.667331.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr