Araştırma Makalesi
BibTex RIS Kaynak Göster

Z_8+uZ_8 Halkası Üzerinde Çift Aykırı Devirli Kodlar

Yıl 2021, , 1272 - 1281, 31.12.2021
https://doi.org/10.17798/bitlisfen.904152

Öz

Bu çalışmada u^2=1 olmak üzere 〖S=Z〗_8+uZ_8 halkası üzerindeki aykırı devirli ve çift (double) aykırı devirli kodlar çalışılmıştır. θ, S üzerinde bir otomorfizm ve δ_θ S üzerinde bir türetim (derivation) olmak üzere S[x,θ,δ_θ ] aykırı polinomlar halkası tanımlanmıştır. S üzerinde δ_θ-devirli kodlar tanımlanarak bu kod ailesinin bazı cebirsel özellikleri incelenmiştir. Ayrıca bu kod sınıfının bir genellemesi olan çift aykırı devirli kodlar çalışılmıştır.

Kaynakça

  • [1] Hammons AR, Kumar PV, Calderbank AR, Sloane NJA and Solé P. 1994. The ‐linearity of Kerdock, Preparata, Goethals, and Related Codes. IEEE Transactions on Information Theory, 40: 301‐319.
  • [2] Cengellenmis Y. 2010. On the Cyclic Codes over F_3+〖vF〗_3. International Journal of Algebra, 4(6): 253-259.
  • [3] Dertli A and Cengellenmis Y. 2019. On the Codes Over the Ring Z_4+uZ_4+vZ_4 Cyclic, Constacyclic, Quasi-Cyclic Codes, Their Skew Codes, Cyclic DNA and Skew Cyclic DNA Codes. Prespacetime Journal, 10(2): 196-213.
  • [4] Çalışkan, B. 2020. Cylic Codes over the Ring Z_8+uZ_8+vZ_8. International Conference on Mathematics and Its Applications in Science and Engineering (ICMASE 2020), Proceedings Book, Ankara Hacı Bayram Veli University, 9-10 July, Ankara, 7-12.
  • [5] Çalışkan B. 2020. Linear Codes over the Ring Z_8+uZ_8+vZ_8. Conference Proceeding of 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020), Conference Proceeding Science and Technology, 3(1): 19-23.
  • [6] Borges J, Fernández-Córdoba C, Ten-Valls R. 2018. Z_2-double cyclic codes. Desings, Codes and Cryptography, 86:463-479.
  • [7] Gao J, Shi MJ, Wu TT. On double cyclic codes over Z_4. Finite Fields and Their Applications, 39:233-250.
  • [8] Boucher D, Geiselmann W and Ulmer F. 2007. Skew Cyclic Codes. Applicable Algebra in Engineering, Communication and Computing, 18(4): 379-389.
  • [9] Boucher D and Ulmer F. 2009. Coding with Skew Polynomial Rings. Journal of Symbolic Computation, 44: 1644‐1656.
  • [10] Sharma A and Bhaintwal M. 2017. A class of skew-constacyclic codes over Z_4+uZ_4 with derivation. International Journal of Information and Coding Theory, 4(4): 289-303.
  • [11] Carlet C. 1998. Z_(2^k ) linear codes. IEEE Transactions on Information Theory, 44: 1543-1547.
  • [12] Dougherty ST and Fernández-Córdoba C. 2011. Codes over Z_(2^k ), gray map and self-dual codes. Advances in Mathematics Communications, 5: 571-588.

Double Skew Cyclic Codes over the Ring Z_8+uZ_8

Yıl 2021, , 1272 - 1281, 31.12.2021
https://doi.org/10.17798/bitlisfen.904152

Öz

In this work, skew cyclic and double skew cyclic codes over the ring 〖S=Z〗_8+uZ_8 where u^2=1 are studied. The skew polynomial ring S[x,θ,δ_θ ] are introduced, where θ is an automorphism on S and δ_θ is a derivation on S. Defining δ_θ-cyclic codes, some algebric properties of these families of codes are invastigated. Also, double skew cyclic codes regarding as a generalization of skew cyclic codes are studied.

Kaynakça

  • [1] Hammons AR, Kumar PV, Calderbank AR, Sloane NJA and Solé P. 1994. The ‐linearity of Kerdock, Preparata, Goethals, and Related Codes. IEEE Transactions on Information Theory, 40: 301‐319.
  • [2] Cengellenmis Y. 2010. On the Cyclic Codes over F_3+〖vF〗_3. International Journal of Algebra, 4(6): 253-259.
  • [3] Dertli A and Cengellenmis Y. 2019. On the Codes Over the Ring Z_4+uZ_4+vZ_4 Cyclic, Constacyclic, Quasi-Cyclic Codes, Their Skew Codes, Cyclic DNA and Skew Cyclic DNA Codes. Prespacetime Journal, 10(2): 196-213.
  • [4] Çalışkan, B. 2020. Cylic Codes over the Ring Z_8+uZ_8+vZ_8. International Conference on Mathematics and Its Applications in Science and Engineering (ICMASE 2020), Proceedings Book, Ankara Hacı Bayram Veli University, 9-10 July, Ankara, 7-12.
  • [5] Çalışkan B. 2020. Linear Codes over the Ring Z_8+uZ_8+vZ_8. Conference Proceeding of 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA-2020), Conference Proceeding Science and Technology, 3(1): 19-23.
  • [6] Borges J, Fernández-Córdoba C, Ten-Valls R. 2018. Z_2-double cyclic codes. Desings, Codes and Cryptography, 86:463-479.
  • [7] Gao J, Shi MJ, Wu TT. On double cyclic codes over Z_4. Finite Fields and Their Applications, 39:233-250.
  • [8] Boucher D, Geiselmann W and Ulmer F. 2007. Skew Cyclic Codes. Applicable Algebra in Engineering, Communication and Computing, 18(4): 379-389.
  • [9] Boucher D and Ulmer F. 2009. Coding with Skew Polynomial Rings. Journal of Symbolic Computation, 44: 1644‐1656.
  • [10] Sharma A and Bhaintwal M. 2017. A class of skew-constacyclic codes over Z_4+uZ_4 with derivation. International Journal of Information and Coding Theory, 4(4): 289-303.
  • [11] Carlet C. 1998. Z_(2^k ) linear codes. IEEE Transactions on Information Theory, 44: 1543-1547.
  • [12] Dougherty ST and Fernández-Córdoba C. 2011. Codes over Z_(2^k ), gray map and self-dual codes. Advances in Mathematics Communications, 5: 571-588.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Basri Çalışkan 0000-0003-0512-4208

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 26 Mart 2021
Kabul Tarihi 12 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE B. Çalışkan, “Z_8+uZ_8 Halkası Üzerinde Çift Aykırı Devirli Kodlar”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 4, ss. 1272–1281, 2021, doi: 10.17798/bitlisfen.904152.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr