Araştırma Makalesi
BibTex RIS Kaynak Göster

Centaurea fenzlii Reichardt Özütünün Antioksidan Özellikleri ve Enzim İnhibisyon Etkisinin Belirlenmesi

Yıl 2019, Cilt: 8 Sayı: 1, 66 - 73, 12.03.2019
https://doi.org/10.17798/bitlisfen.484336

Öz

Çiçeklenme döneminde toplanan Centaurea fenzlii Reichardtın
toprak üstü kısımları farklı polariteye sahip çözücülerde maserasyon yöntemi
kullanılarak çözüldü ve ekstreleri elde edildi. Çalışmalara metanol ekstresi
ile devam edildi. Metanol ekstresinin toplam fenolik ve flavonoid içerikleri
sırasıyla,
16,72 mg GAE/g ka ve 173,16 mg
KAE/g ka

olarak belirlendi. Antioksidan kapasiteleri demir indirgeyici gücü (FRAP) için 0,256 mmol TE/g
ka
, bakır
indirgeyici gücü (CUPRAC) için 0,878 mmol TE/g
ka
, ABTS için 0,354 mmol TE/g ka ve DPPH
için
0,661 mmol TE/g ka olarak saptandı. Ayrıca, ekstrelerinin
kolinesteraz, α-amilaz, α-glukozidaz ve tirozinaz enzimlerine karşı inhibe
edici etkileri de belirlendi. Enzim inhibisyon etkisi sırasıyla, α-Glukozidaz için 0,331 mmol AKE/g ka,
α-Amilaz için 0,354 mmol AKE/g ka, AChE için 0,367 mmol GAE/g ka, BChE için
0,878 mmol GAE/g ka ve Tirozinaz için mmol 0,256 KE/g ka olarak bulundu.

Kaynakça

  • 1. Bona, M., 2016. Centaurea amanosensis (Asteraceae), a new species from Turkey. Plant Biosystems, 150 (5): 1083-1086.
  • 2. Baharfar, R., et al., 2009. Antioxidant and antibacterial activities of the methanolic extract of Centaurea zuvandica Sosn. Iran JOC, 3: 172-177.
  • 3. Koca, U., I.P. Suntar, H. Keles, E. Yesilada, and E.K. Akkol, 2009. In vivo anti-inflammatory and wound healing activities of Centaurea iberica Trev. ex Spreng. J Ethnopharmacol, 126 (3): 551-556.
  • 4. Kose, Y.B., et al., 2016. Chemical Composition and Biological Activity of Centaurea baseri: New Species from Turkey. Chem Biodivers, 13 (10): 1369-1379.
  • 5. Akkol, E.K., R. Arif, F. Ergun, and E. Yesilada, 2009. Sesquiterpene lactones with antinociceptive and antipyretic activity from two Centaurea species. J Ethnopharmacol, 122 (2): 210-215.
  • 6. Aktumsek, A., G. Zengin, G.O. Guler, Y.S. Cakmak, and A. Duran, 2011. Screening for in vitro antioxidant properties and fatty acid profiles of five Centaurea L. species from Turkey flora. Food Chem Toxicol, 49 (11): 2914-2920.
  • 7. Dumlu, M.U. and E. Gurkan, 2006. A new active compound from Centaurea species. Z Naturforsch C, 61 (1-2): 44-46.
  • 8. Karamenderes, C., S. Khan, B.L. Tekwani, M.R. Jacob, and I.A. Khan, 2006. Antiprotozoal and antimicrobial activities of Centaurea species growing in Turkey. Pharmaceutical Biology, 44 (7): 534-539.
  • 9. Albayrak, S., B. Atasagun, and A. Aksoy, 2017. Comparison of phenolic components and biological activities of two Centaurea sp. obtained by three extraction techniques. Asian Pac J Trop Med, 10 (6): 599-606.
  • 10. Ozsoy, N., et al., 2015. Antioxidant, Anti-Inflammatory, Acetylcholinesterase Inhibitory and Antimicrobial Activities of Turkish Endemic Centaurea Antiochia Var-Praealta. Journal of Food Biochemistry, 39 (6): 771-776.
  • 11. Gurbuz, I. and E. Yesilada, 2007. Evaluation of the anti-ulcerogenic effect of sesquiterpene lactones from Centaurea solstitialis L. ssp. solstitialis by using various in vivo and biochemical techniques. J Ethnopharmacol, 112 (2): 284-291.
  • 12. Ozcelik, B., I. Gurbuz, T. Karaoglu, and E. Yesilada, 2009. Antiviral and antimicrobial activities of three sesquiterpene lactones from Centaurea solstitialis L. ssp. solstitialis. Microbiol Res, 164 (5): 545-552.
  • 13. Yirtici, U., F. Goger, M. Sarimahmut, and A. Ergene, 2017. Cytotoxic and apoptotic effects of endemic Centaurea fenzlii Reichardt on the MCF-7 breast cancer cell line. Turkish Journal of Biology, 41 (2): 370-377.
  • 14. Dhouafli, Z., et al., 2018. Screening for amyloid-β aggregation inhibitor and neuronal toxicity of eight Tunisian medicinal plants. Industrial Crops and Products, 111: 823-833.
  • 15. Li, Q., et al., 2017. Cholinesterase, β-amyloid aggregation inhibitory and antioxidant capacities of Chinese medicinal plants. Industrial Crops and Products, 108: 512-519.
  • 16. Li, W., et al., 2018. Type 2 diabetes mellitus and cerebrospinal fluid Alzheimer's disease biomarker amyloid beta1-42 in Alzheimer's Disease Neuroimaging Initiative participants. Alzheimers Dement (Amst), 10: 94-98.
  • 17. Mendes, A.L., H.A. Miot, and V.J. Haddad, 2017. Diabetes mellitus and the skin. An Bras Dermatol, 92 (1): 8-20.
  • 18. Chigayo, K., P.E.L. Mojapelo, S. Mnyakeni-Moleele, and J.M. Misihairabgwi, 2016. Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pacific Journal of Tropical Biomedicine, 6 (12): 1037-1043.
  • 19. Slinkard, K. and V.L. Singleton, 1977. Total Phenol Analysis: Automation and Comparison with Manual Methods. American Journal of Enology and Viticulture, 28 (1): 49-55.
  • 20. Zenão, S., A. Aires, C. Dias, M.J. Saavedra, and C. Fernandes, 2017. Antibacterial potential of Urtica dioica and Lavandula angustifolia extracts against methicillin resistant Staphylococcus aureus isolated from diabetic foot ulcers. Journal of Herbal Medicine, 10: 53-58.
  • 21. Fitsiou, E., et al., 2016. Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules, 21 (8): 1069.
  • 22. Auzanneau, N., P. Weber, A. Kosinska-Cagnazzo, and W. Andlauer, 2018. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. Journal of Food Composition and Analysis, 66: 81-89.
  • 23. Reşat, A., K. Güçlü, M. Özyürek, K. Saliha Esin, and E. Erça, 2006. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57 (5/6): 292.
  • 24. Jiménez, N., et al., 2015. Antioxidant capacity and phenolic content of commonly used anti-inflammatory medicinal plants in Colombia. Industrial Crops and Products, 70: 272-279.
  • 25. Sarikurkcu, C., et al., 2018. Chemical characterization and biological activity of Onosma gigantea extracts. Industrial Crops and Products, 115: 323-329.
  • 26. Shahrbandy, K. and R. Hosseinzadeh, 2007. In vitro Antioxidant Activity of Polygonium hyrcanicum, Centaurea depressa, Sambucus ebutus, Mentha spicata and Phytolacca americana. Pakistan Journal of Biological Sciences, 10 (4): 637-640.
  • 27. Erol-Dayi, Ö., M. Pekmez, M. Bona, A. Aras-Perk, and N. Arda, 2011. Total Phenolic Contents, Antioxidant Activities Cytotoxicity of Three Centaurea Species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa C. spicata. Free Radicals and Antioxidants, 1 (2): 31-36.
  • 28. Ayaz, F.A., et al., 2017. Fatty acid composition and antioxidant capacity of cypselas in Centaurea s.l. taxa (Asteraceae, Cardueae) from NE Anatolia. South African Journal of Botany, 112: 474-482.
  • 29. Ozsoy, N., et al., 2015. Antioxidant, Anti‐Inflammatory, Acetylcholinesterase Inhibitory and Antimicrobial Activities of Turkish Endemic Centaurea antiochia var. Praealta. Journal of Food Biochemistry, 39 (6): 771-776.
  • 30. Loganayaki, N., P. Siddhuraju, and S. Manian, 2013. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J Food Sci Technol, 50 (4): 687-695.
  • 31. Kenny, O., et al., 2014. Investigating the potential of under-utilised plants from the Asteraceae family as a source of natural antimicrobial and antioxidant extracts. Food Chem, 161: 79-86.
  • 32. Piluzza, G. and S. Bullitta, 2011. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm Biol, 49 (3): 240-247.
  • 33. Sadeghi, Z., J. Valizadeh, O. Azyzian Shermeh, and M. Akaberi, 2015. Antioxidant activity and total phenolic content of Boerhavia elegans (choisy) grown in Baluchestan, Iran. Avicenna J Phytomed, 5 (1): 1-9.
  • 34. Erel, S.B., et al., 2014. Bioactivity screening of five Centaurea species and in vivo anti-inflammatory activity of C. athoa. Pharm Biol, 52 (6): 775-781.
  • 35. Floegel, A., D.O. Kim, S.J. Chung, S.I. Koo, and O.K. Chun, 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24 (7): 1043-1048.
  • 36. Zengin, G., G. Bulut, A. Mollica, C.M. Nancy Picot-Allain, and M.F. Mahomoodally, 2018. In vitro and in silico evaluation of Centaurea saligna (K.Koch) Wagenitz-An endemic folk medicinal plant. Comput Biol Chem, 73: 120-126.
  • 37. Bessada, S.M.P., J.C.M. Barreira, and M.B.P.P. Oliveira, 2015. Asteraceae species with most prominent bioactivity and their potential applications: A review. Industrial Crops and Products, 76: 604-615.
  • 38. Sarikurkcu, C., M.C. Uren, B. Tepe, M. Cengiz, and M.S. Kocak, 2015. Phlomis armeniaca: Phenolic compounds, enzyme inhibitory and antioxidant activities. Industrial Crops and Products, 78: 95-101.
  • 39. Darvesh, S., 2016. Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer's Disease. Current Alzheimer Research, 13 (10): 1173-1177.
  • 40. Reid, G.A. and S. Darvesh, 2015. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar beta-amyloid in an Alzheimer mouse model. Neuroscience, 298: 424-435.
  • 41. Greig, N.H., et al., 2005. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci U S A, 102 (47): 17213-17218.
  • 42. Aktumsek, A., G. Zengin, G.O. Guler, Y.S. Cakmak, and A. Duran, 2013. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem Toxicol, 55: 290-296.
  • 43. Liu, S., Z. Ai, F. Qu, Y. Chen, and D. Ni, 2017. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against alpha-amylase, alpha-glucosidase and intestinal glucose uptake. Food Chem, 234: 168-173.
  • 44. Zengin, G., et al., 2018. Identification of phenolic components via LC-MS analysis and biological activities of two Centaurea species: C. drabifolia subsp. drabifolia and C. lycopifolia. J Pharm Biomed Anal, 149: 436-441.
  • 45. Aghraz, A., et al., 2018. Antioxidant activity and enzymes inhibitory properties of several extracts from two Moroccan Asteraceae species. South African Journal of Botany, 118: 58-64.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Ümit Yırtıcı

Yayımlanma Tarihi 12 Mart 2019
Gönderilme Tarihi 16 Kasım 2018
Kabul Tarihi 23 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE Ü. Yırtıcı, “Centaurea fenzlii Reichardt Özütünün Antioksidan Özellikleri ve Enzim İnhibisyon Etkisinin Belirlenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 8, sy. 1, ss. 66–73, 2019, doi: 10.17798/bitlisfen.484336.

Cited By



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr