Araştırma Makalesi
BibTex RIS Kaynak Göster

Bicomplex Numbers: Further Contributions to a Fibonacci and Fibonacci -Lucas Matrices Oriented Approach

Yıl 2021, Cilt: 10 Sayı: 4, 1386 - 1393, 31.12.2021
https://doi.org/10.17798/bitlisfen.954321

Öz

In this study, by using Fibonacci Q-matrix and Lucas Q^'-matrix we define bicomplex Fibonacci Q-matrix and bicomplex Lucas Q^'-matrix. After that using this matrix representation, we give some identities.

Kaynakça

  • Referans1 Price G. B. 1991. An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, Inc: New York. I(1)-44(1).
  • Referans2 Dunlap R. A. 1997. The Golden Ratio and Fibonacci Numbers. World Scientific Press.
  • Referans3 Vajda S. 1989. Fibonacci and Lucas numbers, and the Golden Section. Theory and Applications, Halsted Press.
  • Referans4 Hoggatt V. E. 1969. Fibonacci and Lucas Numbers published by The Fibonacci Association.
  • Referans5 Iyer M. R. 1969. Some Results on Fibonacci Quaternions. The Fibonacci Quarterly, 7(2), 201-210.
  • Referans6 Knuth D. 2013. Negafibonacci Numbers and Hyperbolic Plane. Annual Meeting of the Math. Association of America.
  • Referans7 Horadam A. F. 191. A Generalized Fibonacci Sequence. American Math. Monthly, 68.
  • Referans8 Iyer M. R. 1969. Identities Involving Generalized Fibonacci Numbers. the Fibonacci Quarterly, 7(1), 66-72.
  • Referans9 Lucas E. 1961. Théorie des Numbers, 1(520). 25 Nf. Balanchard, Paris.
  • Referans10 Koshy T. 2001. Fibonacci and Lucas Numbers with Applications. Wiley-Intersience Publication, New York.
  • Referans11 Basin S. L. Hoggatt V. E. 1963. A Primer on the Fibonacci Sequence, Part II. Fib. Quart. 1, 61-68.
  • Referans12 Brenner J. L. 1951. June Meeting of the Pacific Northwest Section. 1. Lucas Matrix. Amer. Math. Monthly , 58, 220-221.
  • Referans13 Honsberger R. 1985. The Matrix Q. Mathematical Gems III. Washington, DC: Math. Assoc. Amer. 106-107.
  • Referans14 King C. H. 1960. Some Further Properties of the Fibonacci Numbers. Master's thesis. San Jose, CA: San Jose State.
  • Referans15 Köken F. and Bozkurt D. 2010. On lucas numbers by the matrix method Hacettepe Journal of Mathematics and Statistics 39(4), 471-475.
  • Referans16 Glynn D. G. 2010. Permanenet of a square matrix. European Journal of Combinatorics, 31(7), 1891-1897.

Bikompleks Sayılar: Fibonacci ve Fibonacci-Lucas Matrislerine yönelik Yaklaşımına İlave katkılar

Yıl 2021, Cilt: 10 Sayı: 4, 1386 - 1393, 31.12.2021
https://doi.org/10.17798/bitlisfen.954321

Öz

Bu çalışmada, Fibonacci Q -matrisi kullanılarak bikompleks Fibonacci Q -matris and bikompleks Lucas Q -matrisi tanımladık. Daha sonra bu matris sunumunu kullanarak bazı özdeşlikler verdik.

In this study, by using Fibonacci Q -matrix we define bicomplex Fibonacci Q -matrix and bicomplex Lucas Q^' -matrix. After that using this matrix representation, we give some identities.

Kaynakça

  • Referans1 Price G. B. 1991. An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, Inc: New York. I(1)-44(1).
  • Referans2 Dunlap R. A. 1997. The Golden Ratio and Fibonacci Numbers. World Scientific Press.
  • Referans3 Vajda S. 1989. Fibonacci and Lucas numbers, and the Golden Section. Theory and Applications, Halsted Press.
  • Referans4 Hoggatt V. E. 1969. Fibonacci and Lucas Numbers published by The Fibonacci Association.
  • Referans5 Iyer M. R. 1969. Some Results on Fibonacci Quaternions. The Fibonacci Quarterly, 7(2), 201-210.
  • Referans6 Knuth D. 2013. Negafibonacci Numbers and Hyperbolic Plane. Annual Meeting of the Math. Association of America.
  • Referans7 Horadam A. F. 191. A Generalized Fibonacci Sequence. American Math. Monthly, 68.
  • Referans8 Iyer M. R. 1969. Identities Involving Generalized Fibonacci Numbers. the Fibonacci Quarterly, 7(1), 66-72.
  • Referans9 Lucas E. 1961. Théorie des Numbers, 1(520). 25 Nf. Balanchard, Paris.
  • Referans10 Koshy T. 2001. Fibonacci and Lucas Numbers with Applications. Wiley-Intersience Publication, New York.
  • Referans11 Basin S. L. Hoggatt V. E. 1963. A Primer on the Fibonacci Sequence, Part II. Fib. Quart. 1, 61-68.
  • Referans12 Brenner J. L. 1951. June Meeting of the Pacific Northwest Section. 1. Lucas Matrix. Amer. Math. Monthly , 58, 220-221.
  • Referans13 Honsberger R. 1985. The Matrix Q. Mathematical Gems III. Washington, DC: Math. Assoc. Amer. 106-107.
  • Referans14 King C. H. 1960. Some Further Properties of the Fibonacci Numbers. Master's thesis. San Jose, CA: San Jose State.
  • Referans15 Köken F. and Bozkurt D. 2010. On lucas numbers by the matrix method Hacettepe Journal of Mathematics and Statistics 39(4), 471-475.
  • Referans16 Glynn D. G. 2010. Permanenet of a square matrix. European Journal of Combinatorics, 31(7), 1891-1897.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Faik Babadağ 0000-0001-9098-838X

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 18 Haziran 2021
Kabul Tarihi 19 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 4

Kaynak Göster

IEEE F. Babadağ, “Bicomplex Numbers: Further Contributions to a Fibonacci and Fibonacci -Lucas Matrices Oriented Approach”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 4, ss. 1386–1393, 2021, doi: 10.17798/bitlisfen.954321.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr