Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 12 Sayı: 2, 396 - 401, 27.06.2023
https://doi.org/10.17798/bitlisfen.1226395

Öz

Kaynakça

  • [1] G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B, vol. 716, no. 1, pp. 1–29, 2012
  • [2] S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B, vol. 716, no. 1, pp. 30–61, 2012.
  • [3] N. Arkani-Hamed, T. Han, M. Mangano, and L.-T. Wang, “Physics opportunities of a 100 TeV proton–proton collider,” Phys. Rep., vol. 652, pp. 1–49, 2016.
  • [4] M.L. Mangano, G. Zanderighi, J.A Aguilar Saavedra, S. Alekhin, S. Badger, C.W. Bauer, T. Becher, V. Bertone , S. Bonvini Boselli , E. Bothmann , et al. ’’ Physics at the FCC-hh, a 100 TeV pp collider, ’’ Cern Yellow Report., vol. 3, pp.1-254, Oct 2017.
  • [5] R. Contino, D. Curtin, A. Katz , M.L. Mangano, G. Panico , M.J Ramsey-Musolf , G. Zanderighi, C. Anastasiou , W. Astill , G. Bambhaniya , et al. “Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies,” Cern Yellow Report., vol. 3,pp. 255-440, Jun 2016.
  • [6] V. Khachatryan et al., “Constraints on the spin-parity and anomalousHVVcouplings of the Higgs boson in proton collisions at 7 and 8 TeV,” Phys. Rev., vol. 92, no. 1, 2015.
  • [7] T. Corbett, O. J. P. Éboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, “Constraining anomalous Higgs boson interactions,” Phys. Rev., vol. 86, no. 7, 2012.
  • [8] T. Corbett, O. J. P. Éboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, “Robust determination of the Higgs couplings: Power to the data,” Phys. Rev., vol. 87, no. 1, 2013.
  • [9] E. Massó and V. Sanz, “Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC,” Phys. Rev., vol. 87, no. 3, 2013.
  • [10] S. Banerjee, S. Mukhopadhyay, B. Mukhopadhyaya, “Higher dimensional operators and LHC Higgs data : the role of modified kinematics” Phys. Rev. D., vol.89, pp.1-5,March 2014.
  • [11] S. Taheri Monfared, S. Fayazbakhsh, and M. Mohammadi Najafabadi, “Exploring anomalous HZγ couplings in γ-proton collisions at the LHC,” Phys. Lett. B, vol. 762, pp. 301–308, 2016.
  • [12] F. P. An et al., “New measurement of antineutrino oscillation with the full detector configuration at Daya Bay,” Phys. Rev. Lett., vol. 115, no. 11, p. 111802, 2015.
  • [13] A. J. Barr, M. J. Dolan, C. Englert, D. E. F. de Lima, and M. Spannowsky, “Higgs self-coupling measurements at a 100 TeV hadron collider,” J. High Energy Phys., vol. 2015, no. 2, 2015.
  • [14] C. Degrande, V. V. Khoze, and O. Mattelaer, “Multi-Higgs-boson production in gluon fusion at 100 TeV,” Phys. Rev. D., vol. 94, no. 8, 2016.
  • [15] B. Fuks, J. H. Kim, and S. J. Lee, “Probing Higgs boson self-interactions in proton-proton collisions at a center-of-mass energy of 100 TeV,” Phys. Rev. D., vol. 93, no. 3, 2016.
  • [16] J. Baglio, A. Djouadi, and J. Quevillon, “Prospects for Higgs physics at energies up to 100 TeV,” Rep. Prog. Phys., vol. 79, no. 11, p. 116201, 2016.
  • [17] A. Papaefstathiou and K. Sakurai, “Triple Higgs boson production at a 100 TeV proton-proton collider,” J. High Energy Phys., vol. 2016, no. 2, 2016.
  • [18] A. Abada et al., “FCC-hh: The hadron collider: Future circular collider conceptual design report volume 3,” Eur. Phys. J. Spec. Top., vol. 228, no. 4, pp. 755–1107, 2019.
  • [19] The CMS collaboration et al., “Exclusive γγ → μ + μ − production in proton-proton collisions at $ \sqrt s = 7 $ TeV,” J. High Energy Phys., vol. 2012, no. 1, 2012.
  • [20] The CMS collaboration et al., “Search for exclusive or semi-exclusive γγ production and observation of exclusive and semi-exclusive e+e− production in pp collisions at $ \sqrts=7 $ TeV,” J. High Energy Phys., vol. 2012, no. 11, 2012.
  • [21] The CMS collaboration et al., “Study of exclusive two-photon production of W+W− in pp collisions at $ \sqrts=7 $ TeV and constraints on anomalous quartic gauge couplings,” J. High Energy Phys., vol. 2013, no. 7, 2013.
  • [22] V. Khachatryan et al., “Evidence for exclusive γγ → W + W − production and constraints on anomalous quartic gauge couplings in pp collisions at s = 7 $$ \sqrts=7 $$ and 8 TeV,” J. High Energy Phys., vol. 2016, no. 8, 2016.
  • [23] M. Aaboud et al., “Measurement of exclusiveγγ→W+W−production and search for exclusive Higgs boson production inppcollisions ats=8 TeVusing the ATLAS detector,” Phys. Rev. D., vol. 94, no. 3, 2016.
  • [24] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, “The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation,” Phys. Rep., vol. 15, no. 4, pp. 181–282, 1975.
  • [25] G. Baur, “Coherent γγ and γA interactions in very peripheral collisions at relativistic ion colliders,” Phys. Rep., vol. 364, no. 5, pp. 359–450, 2002.
  • [26] K. Piotrzkowski, “Tagging two-photon production at the CERN Large Hadron Collider,” Phys. Rev. D Part. Fields, vol. 63, no. 7, 2001.
  • [27] X. Rouby, “Measurements of photon induced processes in CMS and forward proton detection at the LHC,” Universite Catholique de Louvain, Ph.D. thesis, Dept. Phys. Universite Catholique de Louvain, Belgique, Sept.2008. [Online] Available: http://cp3.irmp.ucl.ac.be/~rouby/files/xavier_rouby_final.pdf
  • [28] N. Schul, “Measurements of two-photon interactions at the LHC”, Universite Catholique de Louvain, Ph.D. thesis, Dept. Phys. Universite Catholique de Louvain, Belgique, July 2011 [Online] Available: http://cds.cern.ch/record/1423327/files/TS2011_030_2.pdf
  • [29] W. Buchmüller and D. Wyler, “Effective lagrangian analysis of new interactions and flavour conservation,” Nucl. Phys. B., vol. 268, no. 3–4, pp. 621–653, 1986.
  • [30] C. N. Leung, S. T. Love, and S. Rao, “Low-energy manifestations of a new interactions scale: Operator analysis,” Z. Phys. C - Particles and Fields, vol. 31, no. 3, pp. 433–437, 1986
  • [31] A. De Rújula, M. B. Gavela, P. Hernandez, and E. Massó, “The self-couplings of vector bosons: does LEP-1 obviate LEP-2?,” Nucl. Phys. B., vol. 384, no. 1–2, pp. 3–58, 1992.
  • [32] K. Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld, “Low energy effects of new interactions in the electroweak boson sector,” Phys. Rev. D Part. Fields, vol. 48, no. 5, pp. 2182–2203, 1993.
  • [33] M. C. Gonzalez-Garcia, “Anomalous Higgs couplings,” Int. J. Mod. Phys. A, vol. 14, no. 20, pp. 3121–3156, 1999.
  • [34] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the standard model. Cambridge, England: Cambridge University Press, 2014.
  • [35] M. Farina, Y. Grossman, and D. J. Robinson, “ProbingCPviolation inh→Zγwith background interference,” Phys. Rev., vol. 92, no. 7, 2015.
  • [36] V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, “The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation,” Phys. Rep, vol.15, pp.181-282, Jan.1975.
  • [37] O. Kepka and C. Royon, “AnomalousWWγcoupling in photon-induced processes using forward detectors at the CERN LHC,” Phys. Rev., vol. 78, no. 7, 2008.
  • [38] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC,” Eur. Phys. J. C Part. Fields, vol. 63, no. 2, pp. 189–285, 2009.
  • [39] A. Belyaev, N. D. Christensen, and A. Pukhov, “CalcHEP 3.4 for collider physics within and beyond the Standard Model,” Comput. Phys. Commun., vol. 184, no. 7, pp. 1729–1769, 2013.
  • [40] G. Akkaya Selçin and İ. Şahin, “Non-standard Higgs couplings in single Higgs boson production at the LHC and future linear collider,” Chin. J. Phys., vol. 55, no. 6, pp. 2305–2317, 2017.

Comparison Of Anomalous Higgs Couplings at the Large Hadron Collider and at Proton-Proton Collider with 100 TeV Energy

Yıl 2023, Cilt: 12 Sayı: 2, 396 - 401, 27.06.2023
https://doi.org/10.17798/bitlisfen.1226395

Öz

Gammap and gammagamma ,called photon induced processes, have been examined in various colliders like Large Hadron Collider (LHC) and proton-proton collider with 100 TeV energy. One of the importance of these processes is that they allow for probing the anomalous Higgs couplings. The anomalous Higgs couplings constitute a testing ground for electroweak symmetry breaking (EWSB) mechanism and mass production system. For measuring anomalous Hgammagamma and HZgamma couplings at the LHC and at proton-proton collider with 100 TeV energy, the potential of the pp pgammap pHqX have been examined. Sensitivity bounds on anomalous Higgs couplings have been obtained at %95 confidence level. The analyses have been done for various integrated luminosities and for different scenarios Then the results of them have been compared. Model-independent effective Lagrangian technique have been used and the Higgs boson couplings to gauge bosons have been examined by dimension-six operators.

Kaynakça

  • [1] G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B, vol. 716, no. 1, pp. 1–29, 2012
  • [2] S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B, vol. 716, no. 1, pp. 30–61, 2012.
  • [3] N. Arkani-Hamed, T. Han, M. Mangano, and L.-T. Wang, “Physics opportunities of a 100 TeV proton–proton collider,” Phys. Rep., vol. 652, pp. 1–49, 2016.
  • [4] M.L. Mangano, G. Zanderighi, J.A Aguilar Saavedra, S. Alekhin, S. Badger, C.W. Bauer, T. Becher, V. Bertone , S. Bonvini Boselli , E. Bothmann , et al. ’’ Physics at the FCC-hh, a 100 TeV pp collider, ’’ Cern Yellow Report., vol. 3, pp.1-254, Oct 2017.
  • [5] R. Contino, D. Curtin, A. Katz , M.L. Mangano, G. Panico , M.J Ramsey-Musolf , G. Zanderighi, C. Anastasiou , W. Astill , G. Bambhaniya , et al. “Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies,” Cern Yellow Report., vol. 3,pp. 255-440, Jun 2016.
  • [6] V. Khachatryan et al., “Constraints on the spin-parity and anomalousHVVcouplings of the Higgs boson in proton collisions at 7 and 8 TeV,” Phys. Rev., vol. 92, no. 1, 2015.
  • [7] T. Corbett, O. J. P. Éboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, “Constraining anomalous Higgs boson interactions,” Phys. Rev., vol. 86, no. 7, 2012.
  • [8] T. Corbett, O. J. P. Éboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, “Robust determination of the Higgs couplings: Power to the data,” Phys. Rev., vol. 87, no. 1, 2013.
  • [9] E. Massó and V. Sanz, “Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC,” Phys. Rev., vol. 87, no. 3, 2013.
  • [10] S. Banerjee, S. Mukhopadhyay, B. Mukhopadhyaya, “Higher dimensional operators and LHC Higgs data : the role of modified kinematics” Phys. Rev. D., vol.89, pp.1-5,March 2014.
  • [11] S. Taheri Monfared, S. Fayazbakhsh, and M. Mohammadi Najafabadi, “Exploring anomalous HZγ couplings in γ-proton collisions at the LHC,” Phys. Lett. B, vol. 762, pp. 301–308, 2016.
  • [12] F. P. An et al., “New measurement of antineutrino oscillation with the full detector configuration at Daya Bay,” Phys. Rev. Lett., vol. 115, no. 11, p. 111802, 2015.
  • [13] A. J. Barr, M. J. Dolan, C. Englert, D. E. F. de Lima, and M. Spannowsky, “Higgs self-coupling measurements at a 100 TeV hadron collider,” J. High Energy Phys., vol. 2015, no. 2, 2015.
  • [14] C. Degrande, V. V. Khoze, and O. Mattelaer, “Multi-Higgs-boson production in gluon fusion at 100 TeV,” Phys. Rev. D., vol. 94, no. 8, 2016.
  • [15] B. Fuks, J. H. Kim, and S. J. Lee, “Probing Higgs boson self-interactions in proton-proton collisions at a center-of-mass energy of 100 TeV,” Phys. Rev. D., vol. 93, no. 3, 2016.
  • [16] J. Baglio, A. Djouadi, and J. Quevillon, “Prospects for Higgs physics at energies up to 100 TeV,” Rep. Prog. Phys., vol. 79, no. 11, p. 116201, 2016.
  • [17] A. Papaefstathiou and K. Sakurai, “Triple Higgs boson production at a 100 TeV proton-proton collider,” J. High Energy Phys., vol. 2016, no. 2, 2016.
  • [18] A. Abada et al., “FCC-hh: The hadron collider: Future circular collider conceptual design report volume 3,” Eur. Phys. J. Spec. Top., vol. 228, no. 4, pp. 755–1107, 2019.
  • [19] The CMS collaboration et al., “Exclusive γγ → μ + μ − production in proton-proton collisions at $ \sqrt s = 7 $ TeV,” J. High Energy Phys., vol. 2012, no. 1, 2012.
  • [20] The CMS collaboration et al., “Search for exclusive or semi-exclusive γγ production and observation of exclusive and semi-exclusive e+e− production in pp collisions at $ \sqrts=7 $ TeV,” J. High Energy Phys., vol. 2012, no. 11, 2012.
  • [21] The CMS collaboration et al., “Study of exclusive two-photon production of W+W− in pp collisions at $ \sqrts=7 $ TeV and constraints on anomalous quartic gauge couplings,” J. High Energy Phys., vol. 2013, no. 7, 2013.
  • [22] V. Khachatryan et al., “Evidence for exclusive γγ → W + W − production and constraints on anomalous quartic gauge couplings in pp collisions at s = 7 $$ \sqrts=7 $$ and 8 TeV,” J. High Energy Phys., vol. 2016, no. 8, 2016.
  • [23] M. Aaboud et al., “Measurement of exclusiveγγ→W+W−production and search for exclusive Higgs boson production inppcollisions ats=8 TeVusing the ATLAS detector,” Phys. Rev. D., vol. 94, no. 3, 2016.
  • [24] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, “The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation,” Phys. Rep., vol. 15, no. 4, pp. 181–282, 1975.
  • [25] G. Baur, “Coherent γγ and γA interactions in very peripheral collisions at relativistic ion colliders,” Phys. Rep., vol. 364, no. 5, pp. 359–450, 2002.
  • [26] K. Piotrzkowski, “Tagging two-photon production at the CERN Large Hadron Collider,” Phys. Rev. D Part. Fields, vol. 63, no. 7, 2001.
  • [27] X. Rouby, “Measurements of photon induced processes in CMS and forward proton detection at the LHC,” Universite Catholique de Louvain, Ph.D. thesis, Dept. Phys. Universite Catholique de Louvain, Belgique, Sept.2008. [Online] Available: http://cp3.irmp.ucl.ac.be/~rouby/files/xavier_rouby_final.pdf
  • [28] N. Schul, “Measurements of two-photon interactions at the LHC”, Universite Catholique de Louvain, Ph.D. thesis, Dept. Phys. Universite Catholique de Louvain, Belgique, July 2011 [Online] Available: http://cds.cern.ch/record/1423327/files/TS2011_030_2.pdf
  • [29] W. Buchmüller and D. Wyler, “Effective lagrangian analysis of new interactions and flavour conservation,” Nucl. Phys. B., vol. 268, no. 3–4, pp. 621–653, 1986.
  • [30] C. N. Leung, S. T. Love, and S. Rao, “Low-energy manifestations of a new interactions scale: Operator analysis,” Z. Phys. C - Particles and Fields, vol. 31, no. 3, pp. 433–437, 1986
  • [31] A. De Rújula, M. B. Gavela, P. Hernandez, and E. Massó, “The self-couplings of vector bosons: does LEP-1 obviate LEP-2?,” Nucl. Phys. B., vol. 384, no. 1–2, pp. 3–58, 1992.
  • [32] K. Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld, “Low energy effects of new interactions in the electroweak boson sector,” Phys. Rev. D Part. Fields, vol. 48, no. 5, pp. 2182–2203, 1993.
  • [33] M. C. Gonzalez-Garcia, “Anomalous Higgs couplings,” Int. J. Mod. Phys. A, vol. 14, no. 20, pp. 3121–3156, 1999.
  • [34] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the standard model. Cambridge, England: Cambridge University Press, 2014.
  • [35] M. Farina, Y. Grossman, and D. J. Robinson, “ProbingCPviolation inh→Zγwith background interference,” Phys. Rev., vol. 92, no. 7, 2015.
  • [36] V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, “The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation,” Phys. Rep, vol.15, pp.181-282, Jan.1975.
  • [37] O. Kepka and C. Royon, “AnomalousWWγcoupling in photon-induced processes using forward detectors at the CERN LHC,” Phys. Rev., vol. 78, no. 7, 2008.
  • [38] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC,” Eur. Phys. J. C Part. Fields, vol. 63, no. 2, pp. 189–285, 2009.
  • [39] A. Belyaev, N. D. Christensen, and A. Pukhov, “CalcHEP 3.4 for collider physics within and beyond the Standard Model,” Comput. Phys. Commun., vol. 184, no. 7, pp. 1729–1769, 2013.
  • [40] G. Akkaya Selçin and İ. Şahin, “Non-standard Higgs couplings in single Higgs boson production at the LHC and future linear collider,” Chin. J. Phys., vol. 55, no. 6, pp. 2305–2317, 2017.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Gülistan Akkaya 0000-0003-4720-6631

Erken Görünüm Tarihi 27 Haziran 2023
Yayımlanma Tarihi 27 Haziran 2023
Gönderilme Tarihi 29 Aralık 2022
Kabul Tarihi 29 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

IEEE G. Akkaya, “Comparison Of Anomalous Higgs Couplings at the Large Hadron Collider and at Proton-Proton Collider with 100 TeV Energy”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 12, sy. 2, ss. 396–401, 2023, doi: 10.17798/bitlisfen.1226395.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr