Araştırma Makalesi
BibTex RIS Kaynak Göster

DFT Kullanarak Quinethazone'un Yapısal ve Elektronik Özelliklerinin Araştırılması

Yıl 2025, Cilt: 3 Sayı: 1, 60 - 65, 29.05.2025
https://doi.org/10.70500/bjs.1678446

Öz

Quinethazone molekülünün kapsamlı bir kuantum kimyasal analizi, B3LYP/6-311++G(d,p) seviyesinde yoğunluk fonksiyonel teorisi (DFT) kullanılarak gerçekleştirilmiştir. Moleküler geometri, en kararlı yapıyı ve buna karşılık gelen minimum enerjiyi belirlemek için optimize edilmiştir. Bağ uzunlukları ve bağ açıları dahil olmak üzere temel yapısal parametreler, molekülün iç geometrisini karakterize etmek için analiz edildi. Ek olarak, dipol momenti ve moleküler simetri gibi elektronik tanımlayıcılar, polaritesini ve uzamsal konfigürasyonunu değerlendirmek için değerlendirildi. Sınır moleküler orbitaller (FMOs-HOMO ve LUMO) elektronik dağılımı ve potansiyel reaktivite alanlarını aydınlatmak için incelenmiştir. Molekülün kimyasal davranışı hakkında daha fazla bilgi edinmek için kimyasal potansiyel, sertlik, yumuşaklık ve elektrofiliklik indeksi gibi küresel reaktivite parametreleri hesaplanmıştır. Yük dağılımını görselleştirmek ve elektrofilik ve nükleofilik bölgeleri tanımlamak için moleküler elektrostatik potansiyel (MEP) yüzeyi de oluşturuldu. Bu sonuçlar Quinethazone'un yapısal ve elektronik özelliklerinin ayrıntılı bir şekilde anlaşılmasına katkıda bulunmaktadır.

Kaynakça

  • Alajlani, R., & Alssadi, A. (2019). Dipole Moments of the Bioactive Constituents Present in Flutab Drug by Ab-Initio Calculations. Open Journal of Physical Chemistry, 9(4), 216-220.
  • Cavalli, A., Folkers, G., Recanatini, M., & Scapozza, L. (2003). Density‐functional Theory Applications in Computational Medicinal Chemistry. Quantum Medicinal Chemistry, 41-71.
  • Clark, D. W., & Goldberg, L. I. (1972). Guancydine: a new antihypertensive agent: use with quinethazone and guanethidine or propranolol. Annals of Internal Medicine, 76(4), 579-585.
  • Frisch, M. J. E. A. (2009). gaussian 09, Revision d. 01, Gaussian. Inc, Wallingford CT, 201.
  • Hamilton, J. T., & Gowdey, C. W. (1966). A comparison of the effects of chlorothiazide, quinethazone and placebo on student volunteers and on rats: a teaching exercise. Canadian Medical Association Journal, 95(2), 62.
  • McNally, R. J., Morselli, F., Farukh, B., Chowienczyk, P. J., & Faconti, L. (2019). A review of the prescribing trend of thiazide‐type and thiazide‐like diuretics in hypertension: A UK perspective. British journal of clinical pharmacology, 85(12), 2707-2713.
  • Liang, W., Ma, H., Cao, L., Yan, W., & Yang, J. (2017). Comparison of thiazide‐like diuretics versus thiazide‐type diuretics: a meta‐analysis. Journal of cellular and molecular medicine, 21(11), 2634-2642.
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American chemical society, 105(26), 7512-7516.
  • Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922-1924.
  • Sandler, G. (1964). Quinethazone, a new oral diuretic. British Medical Journal, 2(5404), 288.
  • Sulpizi, M., Folkers, G., Rothlisberger, U., Carloni, P., & Scapozza, L. (2002). Applications of density functional theory‐based methods in medicinal chemistry. Quantitative Structure‐Activity Relationships, 21(2), 173-181. Web of Science, (2025). [Access Date: 07-Feb-2025].

Exploring the Structural and Electronic Features of Quinethazone Using DFT

Yıl 2025, Cilt: 3 Sayı: 1, 60 - 65, 29.05.2025
https://doi.org/10.70500/bjs.1678446

Öz

A comprehensive quantum chemical analysis of the Quinethazone molecule was carried out using density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. The molecular geometry was optimized to determine the most stable structure and its corresponding minimum energy. Key structural parameters, including bond lengths and bond angles, were analyzed to characterize the internal geometry of the molecule. Additionally, electronic descriptors such as—the dipole moment and molecular symmetry were evaluated to assess its polarity and spatial configuration. Frontier molecular orbitals (FMOs-HOMO and LUMO) were examined to elucidate the electronic distribution and potential sites of reactivity. Global reactivity parameters such as—chemical potential, hardness, softness, and electrophilicity index—were calculated to gain further insight into the molecule’s chemical behavior. The molecular electrostatic potential (MEP) surface was also generated to visualize charge distribution and identify electrophilic and nucleophilic regions. These results contribute to a detailed understanding of the structural and electronic properties of Quinethazone.

Kaynakça

  • Alajlani, R., & Alssadi, A. (2019). Dipole Moments of the Bioactive Constituents Present in Flutab Drug by Ab-Initio Calculations. Open Journal of Physical Chemistry, 9(4), 216-220.
  • Cavalli, A., Folkers, G., Recanatini, M., & Scapozza, L. (2003). Density‐functional Theory Applications in Computational Medicinal Chemistry. Quantum Medicinal Chemistry, 41-71.
  • Clark, D. W., & Goldberg, L. I. (1972). Guancydine: a new antihypertensive agent: use with quinethazone and guanethidine or propranolol. Annals of Internal Medicine, 76(4), 579-585.
  • Frisch, M. J. E. A. (2009). gaussian 09, Revision d. 01, Gaussian. Inc, Wallingford CT, 201.
  • Hamilton, J. T., & Gowdey, C. W. (1966). A comparison of the effects of chlorothiazide, quinethazone and placebo on student volunteers and on rats: a teaching exercise. Canadian Medical Association Journal, 95(2), 62.
  • McNally, R. J., Morselli, F., Farukh, B., Chowienczyk, P. J., & Faconti, L. (2019). A review of the prescribing trend of thiazide‐type and thiazide‐like diuretics in hypertension: A UK perspective. British journal of clinical pharmacology, 85(12), 2707-2713.
  • Liang, W., Ma, H., Cao, L., Yan, W., & Yang, J. (2017). Comparison of thiazide‐like diuretics versus thiazide‐type diuretics: a meta‐analysis. Journal of cellular and molecular medicine, 21(11), 2634-2642.
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American chemical society, 105(26), 7512-7516.
  • Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922-1924.
  • Sandler, G. (1964). Quinethazone, a new oral diuretic. British Medical Journal, 2(5404), 288.
  • Sulpizi, M., Folkers, G., Rothlisberger, U., Carloni, P., & Scapozza, L. (2002). Applications of density functional theory‐based methods in medicinal chemistry. Quantitative Structure‐Activity Relationships, 21(2), 173-181. Web of Science, (2025). [Access Date: 07-Feb-2025].
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atom ve Molekül Fiziği
Bölüm Research Articles
Yazarlar

Yusuf Sert 0000-0001-8836-8667

Yayımlanma Tarihi 29 Mayıs 2025
Gönderilme Tarihi 17 Nisan 2025
Kabul Tarihi 12 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE Y. Sert, “Exploring the Structural and Electronic Features of Quinethazone Using DFT”, BJS, c. 3, sy. 1, ss. 60–65, 2025, doi: 10.70500/bjs.1678446.