Yüksek nemli mısır silajına bor takviyesinin besin değeri, mikrobiyal fermentasyon ve erobik stabilite açısından değerlendirilmesi
Yıl 2025,
Cilt: 10 Sayı: 4, 156 - 164, 31.12.2025
Soner Uysal
,
Emre Yılmaz
,
Şeyma Taş
,
Zekeriya Safa İnanç
,
Cihan Öz
,
Bora Bölükbaş
,
Mehmet Akif Yörük
Öz
Bu çalışma, yüksek nemli mısır silajında katkı maddesi olarak kullanılan borik asidin silajın fiziksel özellikleri, besin içeriği, fermentasyon profili, aerobik stabilitesi, küf gelişimi ve göreceli yem değeri üzerine etkilerini belirlemek amacıyla gerçekleştirilmiştir. Deneme dört grup halinde tasarlanmıştır: kontrol grubu (C), 30 mg/kg borik asit (B30), 60 mg/kg borik asit (B60) ve 90 mg/kg borik asit (B90). Hazırlanan silaj materyalleri 60 gün süreyle silolama işlemine bırakılmış, ardından duyusal, kimyasal ve mikrobiyolojik analizler yapılmıştır. Bulgular, B60 ve B90 dozlarında borik asit uygulamalarının, kuru madde, lif fraksiyonları (ADF, NDF) ve ham yağ düzeylerini artırarak silajın yapısal bütünlüğünü koruduğunu ortaya koymuştur. Borik asit ilavesi, proteolitik yıkımı azaltarak amonyak azotu seviyelerini düşürmüş ve böylece silaj proteinlerinin korunmasına katkı sağlamıştır. B90 dozu, laktat üretimini artırarak daha yoğun homofermentatif fermentasyonu teşvik etmiş ve aerobik stabiliteyi iyileştirmiştir. Ancak, bu yüksek doz kuru madde sindirilebilirliği, kuru madde tüketimi ve göreceli yem değeri üzerinde olumsuz etkilere neden olmuştur. Sonuç olarak, borik asit silaj kalitesini artırma potansiyeline sahip umut verici bir katkı maddesi olarak değerlendirilebilir, ancak optimum etkinliğin sağlanabilmesi için uygulanacak dozun dikkatle belirlenmesi gerekmektedir.
Teşekkür
Bu çalışmada kullanılan silaj materyalinin sağlanmasından dolayı Atatürk Üniversitesi GHUAM birimine teşekkür ederiz.
Kaynakça
-
Mishra, D. B., & Tyagi, N. (2024). Silage Additives. In Feed Additives and Supplements for Ruminants (pp. 449-458). Singapore: Springer Nature Singapore.
-
Torres, R. N. S., Ghedini, C. P., Coelho, L. M., Ezequiel, J. M. B., Júnior, G. A., & Almeida, M. T. C. (2021). Meta-analysis of the effects of silage additives on high-moisture grain silage quality and performance of dairy cows. Livestock Science, 251, 104618. https://doi.org/10.1016/j.livsci.2021.104618
-
Bao, J., Wang, L., & Yu, Z. (2022). Effects of different moisture levels and additives on the ensiling characteristics and in vitro digestibility of stylosanthes silage. Animals, 12(12), 1555. https://doi.org/10.3390/ani12121555
-
Khan, N. A., Yu, P., Ali, M., Cone, J. W., & Hendriks, W. H. (2015). Nutritive value of maize silage in relation to dairy cow performance and milk quality. Journal of the Science of Food and Agriculture, 95(2), 238-252. https://doi.org/10.1002/jsfa.6703
-
Güney, E., Tan, M., Gül, Z. D., & Gül, İ. (2010). Determination of yield and silage quality of some maize cultivars in erzurum conditions. Journal of Agricultural Faculty of Atatürk University, 41(2), 105-111.
-
Li, C., Tong, B., Jia, M., Xu, H., Wang, J., & Sun, Z. (2024). Integrated management strategies increased silage maize yield and quality with lower nitrogen losses in cold regions. Frontiers in Plant Science, 15, 1434926. https://doi.org/10.3389/fpls.2024.1434926
-
Brüning, D., Gerlach, K., Weiß, K., & Südekum, K. H. (2025). Effect of chemical additives on maize silage fermentation and aerobic stability and on preference and short‐term ıntake by goats. Grass and Forage Science, 80(3), e12730. https://doi.org/10.1111/gfs.12730
-
Juráček, M., Bíro, D., Šimko, M., Gálik, B., Rolinec, M., Hanušovský, O., … & Ševčík, P. (2024). Effect of various additives on the fermentation quality of corn silage. Journal of Central European Agriculture, 25(1), 146-153. https://doi.org/10.5513/JCEA01/25.1.4120
-
Benjamim da Silva, É., & Kung Jr, L. (2022). A meta-analysis of the effects of a chemical additive on the fermentation and aerobic stability of whole-plant maize silage. Agriculture, 12(2), 132. https://doi.org/10.3390/agriculture12020132
-
Uysal, S., & Yoruk, M. A. (2025). Boric acid in milk replacer as a health enhancer and growth promoter for lambs in the suckling period. Biological Trace Element Research, 203(2), 850-860. https://doi.org/10.1007/s12011-024-04214-4
-
Kan, F., & Kucukkurt, I. (2023). The effects of boron on some biochemical parameters: A review. Journal of Trace Elements in Medicine and Biology, 79, 127249. https://doi.org/10.1016/j.jtemb.2023.127249
-
Kohli, S. K., Kaur, H., Khanna, K., Handa, N., Bhardwaj, R., Rinklebe, J., & Ahmad, P. (2023). Boron in plants: Uptake, deficiency and biological potential. Plant Growth Regulation, 100(2), 267-282. https://doi.org/10.1007/s10725-022-00844-7
-
Bhasker T. V., Gowda N. K. S., Mondal S., Krishnamoorthy, P., Pal, D. T., Mor, A., … & Pattanaik, A. K. (2016). Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats. Journal of Trace Element Medicine and Biology, 36, 73-79. https://doi.org/10.1016/j.jtemb.2016.04.007
-
Association of Official Analytical Chemists. (1990). Official methods of analysis, (14th ed.). Washington, DC.
-
Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
-
Playne, M. J. (1985). Determination of ethanol, volatile fatty acids, lactic and succinic acids in fermentation liquids by gas chromatography. Journal of the Science of Food and Agriculture, 36(8), 638-644. https://doi.org/10.1002/jsfa.2740360803
-
Kahraman, O., Gülşen, N., Inal, F., Alataş, M. S., İnanç, Z. S., Ahmed, I., Şişman, D., & Küçük, A. E. (2023). Comparative analysis of in vitro fermentation parameters in total mixed rations of dairy cows with varied levels of defatted black soldier Fly larvae (Hermetia illucens) as a substitute for soybean meal. Fermentation, 9(7), 652. https://doi.org/10.3390/fermentation9070652
-
Weatherburn, M. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39(8), 971-974. https://doi.org/10.1021/ac60252a045
-
Sarıçiçek, B. Z., Yıldırım, B., Kocabaş, Z., & Demir, E. O. (2016). Effect of storage time on nutrient composition and quality parameters of corn silage. Turkish Journal of Agriculture-Food Science and Technology, 4(11), 934-939. https://doi.org/10.24925/turjaf.v4i11.934-939.746
-
Rohweder, D., Barnes, R. F., & Jorgensen, N. (1978). Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 47(3), 747-759. https://doi.org/10.2527/jas1978.473747x
-
Ashbell, G., Weinberg, Z. G., Azrieli, A., Hen, Y., & Horev, B. (1991). A simple system to study the aerobic determination of silages. Canadian Agricultural Engineering, 34, 391-393.
-
Filya, İ. (2001). Silaj teknolojisi. Hakan Ofset, İzmir, 66, 68.
-
Demircan, B., Velioglu, Y. S., & Giuffre, A. M. (2024). Effects of washing with boric acid solutions on residual boric acid content, microbiological load, and quality of fresh-cut spinach. Heliyon, 10(11), e31974. https://doi.org/10.1016/j.heliyon.2024.e31974
-
Sayin, Z., Ucan, U. S., & Sakmanoglu, A. (2016). Antibacterial and antibiofilm effects of boron on different bacteria. Biological Trace Element Research, 173(1), 241-246. https://doi.org/10.1007/s12011-016-0637-z
-
Başkan, S., Kanak, E. K., & Yılmaz, S. Ö. (2022). Antimicrobial effects of boron and evaluation of usage opportunities as a preservative in foods. The Journal of Food, 47(3), 399-407. 10.15237/gida.GD21120
-
Altınçekiç, E., & Filya, İ. (2018). Effect of using bacterial inoculant and organic acid on the aerobic stability and feed value of small bale maize silages containing low dry matter. Turkish Journal of Agriculture - Food Science and Technology, 6(7), 887-892. https://doi.org/10.24925/turjaf.v6i7.887-892.1873
-
Filya, İ., & Sucu, E. (2007). Effect of a chemical preservative on fermentation, aerobic stability and nutritive value of whole-crop wheat silage. Journal of Applied Animal Research, 32(2), 133-138. https://doi.org/10.1080/09712119.2007.9706863
-
Filya, İ., Sucu, E., & Canbolat, Ö. (2005). Silaj yapımında ve süt ineklerinin beslenmesinde organik asit kullanımı üzerine araştırmalar: 1. Formik asit temeline dayalı bir koruyucunun mısır silajlarının kalite özellikleri üzerine etkisi [Research on the use of organic acids in silage production and dairy cow feeding: 1. Effect of a formic acid–based preservative on the quality characteristics of corn silage]. In Proceedings of the GAP IV Agricultural Congress (pp. 1719–1722).
-
Ma, J., Fan, X., Ma, Z., Huang, X., Tang, M., Yin, F., Zhao, Z., & Gan, S. (2023). Silage additives improve fermentation quality, aerobic stability and rumen degradation in mixed silage composed of amaranth and corn straw. Frontiers in Plant Science, 14, 1189747. https://doi.org/10.3389/fpls.2023.1189747
-
Gheller, L. S., Ghizzi, L. G., Takiya, C. S., Grigoletto, N. T., Silva, T. B., Marques, J. A., Dias, M. S., Freu, G., & Renno, F. P. (2021). Different organic acid preparations on fermentation and microbiological profile, chemical composition, and aerobic stability of whole-plant corn silage. Animal Feed Science and Technology, 281, 115083. https://doi.org/10.1016/j.anifeedsci.2021.115083
-
Sucu, E., & Filya, İ. (2016). Hygienic profile and nutritive value of boot stage wheat silage treated with acid-based preservative. Journal of Agricultural Faculty of Gaziosmanpaşa University, 33(3), 1-9. https://doi.org/10.13002/jafag974
-
Kumari, N., Chauhan, N., Mishra, D. B., & Tyagi, N. (2023). Effect of bacterial inoculants and their combination with enzymes and chemical additives on fermentation characteristics and ensiling period of maize silage. Range Management and Agroforestry, 44(1), 167-174. https://doi.org/10.59515/rma.2023.v44.i1.20
-
Duvnjak, M., Bogunović, I., & Kljak, K. (2024). Aerobic stability of high-moisture corn ensiled with lactiplantibacillus plantarum during prolonged air exposure. Fermentation, 10(11), 580. https://doi.org/10.3390/fermentation10110580
-
Kahraman, O., İnanç, Z. S., Şişman, D., & Demirci, E. (2024). The effect of silage fermentation end products on feed consumption and milk yield in dairy cow. Journal Of The Turkish Veterinary Medical Socıety, 95(1), 73-82. https://doi.org/10.33188/vetheder.1284911
-
Weiss, K., Gerlach, K., & Südekum, K. H. (2011). Flüchtige Substanzen in Maissilagen in Abhängigkeit von Silierbedingungen und aerober Lagerungsdauer. In Proceedings of the VDLUFA Congress (VDLUFA-Schriftenreihe, Vol. 67: Tierische Produktion und Futtermittel, pp. 534–540). Speyer, Germany.
-
Marković, J., Štrbanović, R., Terzić, D., Pojić, M., Vasić, T., & Babić, S. (2010). Relative feed value of alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) at different stage of growth. In Proceedings of the XII International Symposium on Forage Crops of the Republic of Serbia (pp. 469–474). Kruševac, Serbia: Institute for Animal Husbandry.
-
Gürsoy, E., Kara, E., & Sürmen, M. (2021). The effects of different cutting stage and crushed barley applications on silage properties of annual forage crops mixture. Turkish Journal of Agricultural Research, 8(3), 273-281. https://doi.org/10.19159/tutad.958720
-
Sırakaya, S. (2024). Effects of chitosan and its organic acid solutions on corn silage quality. Turkish Journal of Agriculture - Food Science and Technology, 12(5), 739-746. https://doi.org/10.24925/turjaf.v12i5.739-746.6423
-
Çotuk, G. M., & Önenç, S. S. (2016). Effects of bran and pudding addition on silage fermentation, aerobic stability and ın vitro digestibility in alfalfa silage. Journal of Animal Production, 58(1), 13-19.
-
Gandra, J. R., Oliveira, E. R., Takiya, C. S., Goes, R. H. T. B., Paiva, P. G., Oliveira, K., … & Haraki, H. M. C. (2016). Chitosan improves the chemical composition, microbiological quality, and aerobic stability of sugarcane silage. Animal Feed Science and Technology, 214, 44-52. https://doi.org/10.1016/j.anifeedsci.2016.02.020
-
Saricicek, B. Z. and U. Kilic. 2011. Effect of different additives on the nutrient composition, gas in vitro production and silage quality of alfalfa silage. Asian Journal of Animal and Veterinary Advances, 6(6) 618-626. https://doi.org/10.3923/ajava.2011.618.626
-
Zhang, X. Q., Jin, Y. M., Zhang, Y. J., Yu, Z., & Yan, W. H. (2014). Silage quality and preservation of Urtica cannabina ensiled alone and with additive treatment. Grass and Forage Science, 69(3), 405-414. https://doi.org/10.1111/gfs.12036
-
Kaya, E. (2022). Comparison of different laboratory-scale ensiling methods for evaluating the influence of silage additives on maize silage. Turkish Journal of Agricultural and Natural Sciences, 9(3), 705-713. https://doi.org/10.30910/turkjans.1107368
-
Auerbach, H., Theobald, P., Kroschewski, B., & Weiss, K. (2020). Effects of various additives on fermentation, aerobic stability and volatile organic compounds in whole-crop rye silage. Agronomy, 10(12), 1873. https://doi.org/10.3390/agronomy10121873
Evaluation of boron supplementation on nutritional value, microbial fermentation, and aerobic stability in high-moisture corn silage
Yıl 2025,
Cilt: 10 Sayı: 4, 156 - 164, 31.12.2025
Soner Uysal
,
Emre Yılmaz
,
Şeyma Taş
,
Zekeriya Safa İnanç
,
Cihan Öz
,
Bora Bölükbaş
,
Mehmet Akif Yörük
Öz
The aim of this study was to investigate how the inclusion of boric acid as an additive in high-moisture corn silage influences its physical characteristics, nutrient composition, fermentation dynamics, aerobic stability, mold development, and relative feed value. The experiment was designed with four groups: a control group (C), 30 mg/kg boric acid (B30), 60 mg/kg boric acid (B60), and 90 mg/kg boric acid (B90). The prepared silage materials were left in the ensiling process for 60 days, followed by sensory, chemical, and microbiological analyses. The findings revealed that boric acid adding at B60 and B90 doses preserved the structural integrity of the silage by increasing dry matter, fiber fractions (ADF, NDF), and ether extract levels. The addition of boric acid reduced ammonia nitrogen levels by decreasing proteolytic degradation, thereby contributing to the preservation of silage proteins. The B90 dose promoted more intensive homofermentative fermentation by increasing lactate production and improved aerobic stability. However, this high dose negatively influenced on dry matter digestibility, dry matter intake, and relative feed value. In conclusion, boric acid can be considered a promising additive with the potential to improve silage quality, but the dose to be applied must be carefully determined to achieve optimal effectiveness.
Teşekkür
We would like to thank the GHUAM unit of Atatürk University for providing the silage material used in this study.
Kaynakça
-
Mishra, D. B., & Tyagi, N. (2024). Silage Additives. In Feed Additives and Supplements for Ruminants (pp. 449-458). Singapore: Springer Nature Singapore.
-
Torres, R. N. S., Ghedini, C. P., Coelho, L. M., Ezequiel, J. M. B., Júnior, G. A., & Almeida, M. T. C. (2021). Meta-analysis of the effects of silage additives on high-moisture grain silage quality and performance of dairy cows. Livestock Science, 251, 104618. https://doi.org/10.1016/j.livsci.2021.104618
-
Bao, J., Wang, L., & Yu, Z. (2022). Effects of different moisture levels and additives on the ensiling characteristics and in vitro digestibility of stylosanthes silage. Animals, 12(12), 1555. https://doi.org/10.3390/ani12121555
-
Khan, N. A., Yu, P., Ali, M., Cone, J. W., & Hendriks, W. H. (2015). Nutritive value of maize silage in relation to dairy cow performance and milk quality. Journal of the Science of Food and Agriculture, 95(2), 238-252. https://doi.org/10.1002/jsfa.6703
-
Güney, E., Tan, M., Gül, Z. D., & Gül, İ. (2010). Determination of yield and silage quality of some maize cultivars in erzurum conditions. Journal of Agricultural Faculty of Atatürk University, 41(2), 105-111.
-
Li, C., Tong, B., Jia, M., Xu, H., Wang, J., & Sun, Z. (2024). Integrated management strategies increased silage maize yield and quality with lower nitrogen losses in cold regions. Frontiers in Plant Science, 15, 1434926. https://doi.org/10.3389/fpls.2024.1434926
-
Brüning, D., Gerlach, K., Weiß, K., & Südekum, K. H. (2025). Effect of chemical additives on maize silage fermentation and aerobic stability and on preference and short‐term ıntake by goats. Grass and Forage Science, 80(3), e12730. https://doi.org/10.1111/gfs.12730
-
Juráček, M., Bíro, D., Šimko, M., Gálik, B., Rolinec, M., Hanušovský, O., … & Ševčík, P. (2024). Effect of various additives on the fermentation quality of corn silage. Journal of Central European Agriculture, 25(1), 146-153. https://doi.org/10.5513/JCEA01/25.1.4120
-
Benjamim da Silva, É., & Kung Jr, L. (2022). A meta-analysis of the effects of a chemical additive on the fermentation and aerobic stability of whole-plant maize silage. Agriculture, 12(2), 132. https://doi.org/10.3390/agriculture12020132
-
Uysal, S., & Yoruk, M. A. (2025). Boric acid in milk replacer as a health enhancer and growth promoter for lambs in the suckling period. Biological Trace Element Research, 203(2), 850-860. https://doi.org/10.1007/s12011-024-04214-4
-
Kan, F., & Kucukkurt, I. (2023). The effects of boron on some biochemical parameters: A review. Journal of Trace Elements in Medicine and Biology, 79, 127249. https://doi.org/10.1016/j.jtemb.2023.127249
-
Kohli, S. K., Kaur, H., Khanna, K., Handa, N., Bhardwaj, R., Rinklebe, J., & Ahmad, P. (2023). Boron in plants: Uptake, deficiency and biological potential. Plant Growth Regulation, 100(2), 267-282. https://doi.org/10.1007/s10725-022-00844-7
-
Bhasker T. V., Gowda N. K. S., Mondal S., Krishnamoorthy, P., Pal, D. T., Mor, A., … & Pattanaik, A. K. (2016). Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats. Journal of Trace Element Medicine and Biology, 36, 73-79. https://doi.org/10.1016/j.jtemb.2016.04.007
-
Association of Official Analytical Chemists. (1990). Official methods of analysis, (14th ed.). Washington, DC.
-
Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
-
Playne, M. J. (1985). Determination of ethanol, volatile fatty acids, lactic and succinic acids in fermentation liquids by gas chromatography. Journal of the Science of Food and Agriculture, 36(8), 638-644. https://doi.org/10.1002/jsfa.2740360803
-
Kahraman, O., Gülşen, N., Inal, F., Alataş, M. S., İnanç, Z. S., Ahmed, I., Şişman, D., & Küçük, A. E. (2023). Comparative analysis of in vitro fermentation parameters in total mixed rations of dairy cows with varied levels of defatted black soldier Fly larvae (Hermetia illucens) as a substitute for soybean meal. Fermentation, 9(7), 652. https://doi.org/10.3390/fermentation9070652
-
Weatherburn, M. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39(8), 971-974. https://doi.org/10.1021/ac60252a045
-
Sarıçiçek, B. Z., Yıldırım, B., Kocabaş, Z., & Demir, E. O. (2016). Effect of storage time on nutrient composition and quality parameters of corn silage. Turkish Journal of Agriculture-Food Science and Technology, 4(11), 934-939. https://doi.org/10.24925/turjaf.v4i11.934-939.746
-
Rohweder, D., Barnes, R. F., & Jorgensen, N. (1978). Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 47(3), 747-759. https://doi.org/10.2527/jas1978.473747x
-
Ashbell, G., Weinberg, Z. G., Azrieli, A., Hen, Y., & Horev, B. (1991). A simple system to study the aerobic determination of silages. Canadian Agricultural Engineering, 34, 391-393.
-
Filya, İ. (2001). Silaj teknolojisi. Hakan Ofset, İzmir, 66, 68.
-
Demircan, B., Velioglu, Y. S., & Giuffre, A. M. (2024). Effects of washing with boric acid solutions on residual boric acid content, microbiological load, and quality of fresh-cut spinach. Heliyon, 10(11), e31974. https://doi.org/10.1016/j.heliyon.2024.e31974
-
Sayin, Z., Ucan, U. S., & Sakmanoglu, A. (2016). Antibacterial and antibiofilm effects of boron on different bacteria. Biological Trace Element Research, 173(1), 241-246. https://doi.org/10.1007/s12011-016-0637-z
-
Başkan, S., Kanak, E. K., & Yılmaz, S. Ö. (2022). Antimicrobial effects of boron and evaluation of usage opportunities as a preservative in foods. The Journal of Food, 47(3), 399-407. 10.15237/gida.GD21120
-
Altınçekiç, E., & Filya, İ. (2018). Effect of using bacterial inoculant and organic acid on the aerobic stability and feed value of small bale maize silages containing low dry matter. Turkish Journal of Agriculture - Food Science and Technology, 6(7), 887-892. https://doi.org/10.24925/turjaf.v6i7.887-892.1873
-
Filya, İ., & Sucu, E. (2007). Effect of a chemical preservative on fermentation, aerobic stability and nutritive value of whole-crop wheat silage. Journal of Applied Animal Research, 32(2), 133-138. https://doi.org/10.1080/09712119.2007.9706863
-
Filya, İ., Sucu, E., & Canbolat, Ö. (2005). Silaj yapımında ve süt ineklerinin beslenmesinde organik asit kullanımı üzerine araştırmalar: 1. Formik asit temeline dayalı bir koruyucunun mısır silajlarının kalite özellikleri üzerine etkisi [Research on the use of organic acids in silage production and dairy cow feeding: 1. Effect of a formic acid–based preservative on the quality characteristics of corn silage]. In Proceedings of the GAP IV Agricultural Congress (pp. 1719–1722).
-
Ma, J., Fan, X., Ma, Z., Huang, X., Tang, M., Yin, F., Zhao, Z., & Gan, S. (2023). Silage additives improve fermentation quality, aerobic stability and rumen degradation in mixed silage composed of amaranth and corn straw. Frontiers in Plant Science, 14, 1189747. https://doi.org/10.3389/fpls.2023.1189747
-
Gheller, L. S., Ghizzi, L. G., Takiya, C. S., Grigoletto, N. T., Silva, T. B., Marques, J. A., Dias, M. S., Freu, G., & Renno, F. P. (2021). Different organic acid preparations on fermentation and microbiological profile, chemical composition, and aerobic stability of whole-plant corn silage. Animal Feed Science and Technology, 281, 115083. https://doi.org/10.1016/j.anifeedsci.2021.115083
-
Sucu, E., & Filya, İ. (2016). Hygienic profile and nutritive value of boot stage wheat silage treated with acid-based preservative. Journal of Agricultural Faculty of Gaziosmanpaşa University, 33(3), 1-9. https://doi.org/10.13002/jafag974
-
Kumari, N., Chauhan, N., Mishra, D. B., & Tyagi, N. (2023). Effect of bacterial inoculants and their combination with enzymes and chemical additives on fermentation characteristics and ensiling period of maize silage. Range Management and Agroforestry, 44(1), 167-174. https://doi.org/10.59515/rma.2023.v44.i1.20
-
Duvnjak, M., Bogunović, I., & Kljak, K. (2024). Aerobic stability of high-moisture corn ensiled with lactiplantibacillus plantarum during prolonged air exposure. Fermentation, 10(11), 580. https://doi.org/10.3390/fermentation10110580
-
Kahraman, O., İnanç, Z. S., Şişman, D., & Demirci, E. (2024). The effect of silage fermentation end products on feed consumption and milk yield in dairy cow. Journal Of The Turkish Veterinary Medical Socıety, 95(1), 73-82. https://doi.org/10.33188/vetheder.1284911
-
Weiss, K., Gerlach, K., & Südekum, K. H. (2011). Flüchtige Substanzen in Maissilagen in Abhängigkeit von Silierbedingungen und aerober Lagerungsdauer. In Proceedings of the VDLUFA Congress (VDLUFA-Schriftenreihe, Vol. 67: Tierische Produktion und Futtermittel, pp. 534–540). Speyer, Germany.
-
Marković, J., Štrbanović, R., Terzić, D., Pojić, M., Vasić, T., & Babić, S. (2010). Relative feed value of alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) at different stage of growth. In Proceedings of the XII International Symposium on Forage Crops of the Republic of Serbia (pp. 469–474). Kruševac, Serbia: Institute for Animal Husbandry.
-
Gürsoy, E., Kara, E., & Sürmen, M. (2021). The effects of different cutting stage and crushed barley applications on silage properties of annual forage crops mixture. Turkish Journal of Agricultural Research, 8(3), 273-281. https://doi.org/10.19159/tutad.958720
-
Sırakaya, S. (2024). Effects of chitosan and its organic acid solutions on corn silage quality. Turkish Journal of Agriculture - Food Science and Technology, 12(5), 739-746. https://doi.org/10.24925/turjaf.v12i5.739-746.6423
-
Çotuk, G. M., & Önenç, S. S. (2016). Effects of bran and pudding addition on silage fermentation, aerobic stability and ın vitro digestibility in alfalfa silage. Journal of Animal Production, 58(1), 13-19.
-
Gandra, J. R., Oliveira, E. R., Takiya, C. S., Goes, R. H. T. B., Paiva, P. G., Oliveira, K., … & Haraki, H. M. C. (2016). Chitosan improves the chemical composition, microbiological quality, and aerobic stability of sugarcane silage. Animal Feed Science and Technology, 214, 44-52. https://doi.org/10.1016/j.anifeedsci.2016.02.020
-
Saricicek, B. Z. and U. Kilic. 2011. Effect of different additives on the nutrient composition, gas in vitro production and silage quality of alfalfa silage. Asian Journal of Animal and Veterinary Advances, 6(6) 618-626. https://doi.org/10.3923/ajava.2011.618.626
-
Zhang, X. Q., Jin, Y. M., Zhang, Y. J., Yu, Z., & Yan, W. H. (2014). Silage quality and preservation of Urtica cannabina ensiled alone and with additive treatment. Grass and Forage Science, 69(3), 405-414. https://doi.org/10.1111/gfs.12036
-
Kaya, E. (2022). Comparison of different laboratory-scale ensiling methods for evaluating the influence of silage additives on maize silage. Turkish Journal of Agricultural and Natural Sciences, 9(3), 705-713. https://doi.org/10.30910/turkjans.1107368
-
Auerbach, H., Theobald, P., Kroschewski, B., & Weiss, K. (2020). Effects of various additives on fermentation, aerobic stability and volatile organic compounds in whole-crop rye silage. Agronomy, 10(12), 1873. https://doi.org/10.3390/agronomy10121873