Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 3 Sayı: 1, 42 - 50, 26.03.2018
https://doi.org/10.30728/boron.344402

Öz

Kaynakça

  • Reference1 Weimer A.W., ed., Carbide, Nitride and Boride Materials Synthesis and Processing, 1st edition, Chapman & Hall, London, 1996. doi:10.1007/978-94-009-0071-4.
  • Reference2 Ramberg C.E., Beatrice P., Kurokawa K., Worrell W.K., High temperature oxidation behavior of structural silicides, 21st Annual Cocoa Beach Conference And Exposition on Composites, Advanced Ceramics, Materials and Structures, 12-16 January, 1993.
  • Reference3 Suryanarayana C., Mechanical alloying and milling, Prog. Mater. Sci., 46, 1–184, 2001. doi:10.1016/S0079-6425(99)00010-9.
  • Reference4 Guo S.Q., Densification of ZrB2-based composites and their mechanical and physical properties: A review, J. Eur. Ceram. Soc., 29, 995–1011, 2009. doi:10.1016/j.jeurceramsoc.2008.11.008.
  • Reference5 Murthy T.S.R.C., Sonber J.K., Sairam K., Bedse R.D., Chakarvartty J.K., Development of refractory and rare earth metal borides & carbides for high temperature applications, Mater. Today Proc., 3, 3104–3113, 2016. doi:10.1016/j.matpr.2016.09.026.
  • Reference6 Kainer K.U., High temperature ceramic matrix composites, 1st edition, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006. doi:10.1002/3527605622.fmatter.
  • Reference7 Silvestroni L., Meriggi G., Sciti D., Oxidation behavior of ZrB2 composites doped with various transition metal silicides, Corros. Sci., 83, 281–291, 2014. doi:10.1016/j.corsci.2014.02.026.
  • Reference8 Predel B., B-W (Boron-Tungsten), B-Ba–C-Zr, Springer-Verlag, Berlin/Heidelberg, 1992. doi:10.1007/10040476_402.
  • Reference9 Itoh H., Matsudaira T., Naka S., Hamamoto H., Obayashi M., Formation process of tungsten borides by solid state reaction between tungsten and amorphous boron, J. Mater. Sci., 22, 2811–2815, 1987. doi:10.1007/BF01086475.
  • Reference10 Li Q., Zhou D., Zheng W., Ma Y., Chen C., Global structural optimization of tungsten borides, Phys. Rev. Lett., 110, 136-403, 2013. doi:10.1103/PhysRevLett.110.136403.
  • Reference11 Kiessling R., The borides of some transition elements, J. Electrochem. Soc., 98 166–170, 1951. doi:10.1149/1.2778125.
  • Reference12 Brewer L., Sawyer D.L., Templeton D.H., Dauben C.H., A study of the refractory borides, J. Am. Ceram. Soc., 34 173–179, 1951. doi:10.1111/j.1151-2916.1951.tb11631.x.
  • Reference13 Barış M., Şimşek T., Gökmeşe H., Akkurt A., Characterization of W2B nanocrystals synthesized by mechanochemical method, J. Boron., 1, 45–51, 2016.
  • Reference14 Petrovic J.J., High temperature structural silicides, 21st Annual Cocoa Beach Conference and Exposition on Composites, Advanced Ceramics, Materials and Structures, 12-16 January, 1993.
  • Reference15 Murthy T.S.R.Ch., Sonber J., Subramanian C., Hubli R., Suri A., Densification, characterization and oxidation studies of TiB2–WSi2 composite, Int. J. Refract. Met. Hard Mater., 33, 10–21, 2012. doi:10.1016/j.ijrmhm.2012.02.002.
  • Reference16 Silvestroni L., Sciti D., Balat-Pichelin M., Charpentier L., Zirconium carbide doped with tantalum silicide: microstructure, mechanical properties and high temperature oxidation, Mater. Chem. Phys., 143, 407–415, 2013. doi:10.1016/j.matchemphys.2013.09.020.
  • Reference17 Sciti D., Bonnefont G., Fantozzi G., Silvestroni L., Spark plasma sintering of HfB2 with low additions of silicides of molybdenum and tantalum, J. Eur. Ceram. Soc., 30, 3253–3258, 2010. doi:10.1016/j.jeurceramsoc.2010.06.006.
  • Reference18 Magnani G., Brentari A., Burresi E., Coglitore A., Mechanical properties and oxidation behavior of silicon carbide–molybdenum silicides composites, Ceram. Int., 39, 3345–3351, 2013. doi:10.1016/j.ceramint.2012.10.024.
  • Reference19 Cao X.-Z., Wang C., Xue X.-X., Yang H., Preparation of tungsten boride ceramic by pressureless sintering, J. Inorg. Mater., 29, 498–502, 2014. doi:10.3724/SP.J.1077.2014.13411.
  • Reference20 Grabis J., Šteins I., Sīpola I., Rašmane D., formation of high temperature compounds in W-C-B system by reactive spark plasma sintering, Mater. Sci., 21, 369–371, 2015. doi:10.5755/j01.ms.21.3.7352. Reference21 Kuzenkova M.A., Kayuk V.G., Kislyj P.S., Sintering of commercial tungsten boride produced by boron carbide method, Poroshk. Met., 10, 32–36, 1977.
  • Reference22 Chen Y., He D., Qin J., Kou Z., Wang S., Wang J., Ultrahigh-pressure densification of nanocrystalline WB ceramics, J. Mater. Res., 25, 637–640, 2010. doi:10.1557/JMR.2010.0082.
  • Reference23 Hamamoto H., Obayashi M., Matsudaira T., Itoh H., Naka S., Preparation of tungsten boride sintered compact by hot-pressing., J. Japan Soc. Powder Powder Metall., 35, 128–130, 1988. doi:10.2497/jjspm.35.128.
  • Reference24 Fan C., Liu C., Peng F., Tan N., Tang M., Zhang Q., Wang Q., Li F., Wang J., Chen Y., Liang H., Guan S., Yang K., Liu J., Phase stability and incompressibility of tungsten boride (WB) researched by in-situ high pressure x-ray diffraction, Phys. B Condens. Matter., 521, 6–12, 2017. doi:10.1016/j.physb.2017.06.028.
  • Reference25 Jahangiri H., Öveçoğlu M.L., Determination of crystallite size, strain and solubility in mechanically alloyed W-xTi (x=0.5, 1.0, 4.0 and 10.0wt%) powder alloys, Mater. Lett., 178, 193–196, 2016. doi:10.1016/j.matlet.2016.04.158.
  • Reference26 Jung H.J., Sohn Y., Sung H.G., Hyun H.S., Shin W.G., Physicochemical properties of ball milled boron particles: dry vs. wet ball milling process, Powder Technol., 269, 548–553, 2015. doi:10.1016/j.powtec.2014.03.058.
  • Reference27 Zhang S., Khor K.A., Lü L., Preparation of Ti(C,N)-WC-TaC solid solution by mechanical alloying technique, J. Mater. Process. Tech., 48, 779–784, 1995. doi:10.1016/0924-0136(95)91416-Z.
  • Reference28 Ünal N., Öveçoğlu M.L., Effects of wet and dry milling conditions on properties of mechanically alloyed and sintered W–C and W–B4C–C composites, Powder Metall., 52, 254–265, 2009. doi:10.1179/003258909X12490463446434.
  • Reference29 Reid C.B., Forrester J.S., Goodshaw H.J., Kisi E.H., Suaning G.J., A study in the mechanical milling of alumina powder, Ceram. Int., 34, 1551–1556, 2008. doi:10.1016/j.ceramint.2007.05.003.
  • Reference30 Chen Y., He D., Qin J., Kou Z., Bi Y., Ultrasonic and hardness measurements for ultrahigh pressure prepared WB ceramics, Int. J. Refract. Met. Hard Mater., 29, 329–331, 2011. doi:10.1016/j.ijrmhm.2010.12.006.
  • Reference31 Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., Pressureless sintering of zirconium diboride, J. Am. Ceram. Soc., 89, 450–456, 2006. doi:10.1111/j.1551-2916.2005.00739.x.

Effect of tungsten disilicide addition on tungsten boride based composites produced by milling-assisted pressureless sintering

Yıl 2018, Cilt: 3 Sayı: 1, 42 - 50, 26.03.2018
https://doi.org/10.30728/boron.344402

Öz

In this study, tungsten boride (WB and W2B) based composites with various amounts of tungsten disilicide (WSi2) addition were fabricated by using a combined method of mechanical milling (MM), cold isostatic pressing (CIP) and pressureless sintering (PS). MM was conducted for 4 h in ethanol (wet milling) and Argon atmosphere (dry milling) using a high-energy ball mill. WSi2 was used with different amounts (0, 5, 10 and 20 wt.%) in order to investigate its effect on the resultant products. MM’d powders were compacted using CIP under a pressure of 450 MPa, and were consecutively sintered at 1600 °C for 2 h and 1770 °C for 2 h under Ar atmosphere. Compositional, physical and microstructural characterizations of the samples were performed using stereo and optical microscopes, X-ray diffractometer, TOPAS software, scanning electron microscope coupled with an energy-dispersive spectrometer, particle size analyzer and gas pycnometer. Sintered products were also characterized in terms of Archimedes density and Vickers microhardness. Moreover, the oxidation studies of the samples were performed at 500 and 1000 °C via thermogravimetric analyzer. The results showed that the highest density, microhardness and oxidation stability values amongst the fabricated composites were obtained for the dry milled and sintered WB-20 wt.% WSi2 sample. 

Kaynakça

  • Reference1 Weimer A.W., ed., Carbide, Nitride and Boride Materials Synthesis and Processing, 1st edition, Chapman & Hall, London, 1996. doi:10.1007/978-94-009-0071-4.
  • Reference2 Ramberg C.E., Beatrice P., Kurokawa K., Worrell W.K., High temperature oxidation behavior of structural silicides, 21st Annual Cocoa Beach Conference And Exposition on Composites, Advanced Ceramics, Materials and Structures, 12-16 January, 1993.
  • Reference3 Suryanarayana C., Mechanical alloying and milling, Prog. Mater. Sci., 46, 1–184, 2001. doi:10.1016/S0079-6425(99)00010-9.
  • Reference4 Guo S.Q., Densification of ZrB2-based composites and their mechanical and physical properties: A review, J. Eur. Ceram. Soc., 29, 995–1011, 2009. doi:10.1016/j.jeurceramsoc.2008.11.008.
  • Reference5 Murthy T.S.R.C., Sonber J.K., Sairam K., Bedse R.D., Chakarvartty J.K., Development of refractory and rare earth metal borides & carbides for high temperature applications, Mater. Today Proc., 3, 3104–3113, 2016. doi:10.1016/j.matpr.2016.09.026.
  • Reference6 Kainer K.U., High temperature ceramic matrix composites, 1st edition, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006. doi:10.1002/3527605622.fmatter.
  • Reference7 Silvestroni L., Meriggi G., Sciti D., Oxidation behavior of ZrB2 composites doped with various transition metal silicides, Corros. Sci., 83, 281–291, 2014. doi:10.1016/j.corsci.2014.02.026.
  • Reference8 Predel B., B-W (Boron-Tungsten), B-Ba–C-Zr, Springer-Verlag, Berlin/Heidelberg, 1992. doi:10.1007/10040476_402.
  • Reference9 Itoh H., Matsudaira T., Naka S., Hamamoto H., Obayashi M., Formation process of tungsten borides by solid state reaction between tungsten and amorphous boron, J. Mater. Sci., 22, 2811–2815, 1987. doi:10.1007/BF01086475.
  • Reference10 Li Q., Zhou D., Zheng W., Ma Y., Chen C., Global structural optimization of tungsten borides, Phys. Rev. Lett., 110, 136-403, 2013. doi:10.1103/PhysRevLett.110.136403.
  • Reference11 Kiessling R., The borides of some transition elements, J. Electrochem. Soc., 98 166–170, 1951. doi:10.1149/1.2778125.
  • Reference12 Brewer L., Sawyer D.L., Templeton D.H., Dauben C.H., A study of the refractory borides, J. Am. Ceram. Soc., 34 173–179, 1951. doi:10.1111/j.1151-2916.1951.tb11631.x.
  • Reference13 Barış M., Şimşek T., Gökmeşe H., Akkurt A., Characterization of W2B nanocrystals synthesized by mechanochemical method, J. Boron., 1, 45–51, 2016.
  • Reference14 Petrovic J.J., High temperature structural silicides, 21st Annual Cocoa Beach Conference and Exposition on Composites, Advanced Ceramics, Materials and Structures, 12-16 January, 1993.
  • Reference15 Murthy T.S.R.Ch., Sonber J., Subramanian C., Hubli R., Suri A., Densification, characterization and oxidation studies of TiB2–WSi2 composite, Int. J. Refract. Met. Hard Mater., 33, 10–21, 2012. doi:10.1016/j.ijrmhm.2012.02.002.
  • Reference16 Silvestroni L., Sciti D., Balat-Pichelin M., Charpentier L., Zirconium carbide doped with tantalum silicide: microstructure, mechanical properties and high temperature oxidation, Mater. Chem. Phys., 143, 407–415, 2013. doi:10.1016/j.matchemphys.2013.09.020.
  • Reference17 Sciti D., Bonnefont G., Fantozzi G., Silvestroni L., Spark plasma sintering of HfB2 with low additions of silicides of molybdenum and tantalum, J. Eur. Ceram. Soc., 30, 3253–3258, 2010. doi:10.1016/j.jeurceramsoc.2010.06.006.
  • Reference18 Magnani G., Brentari A., Burresi E., Coglitore A., Mechanical properties and oxidation behavior of silicon carbide–molybdenum silicides composites, Ceram. Int., 39, 3345–3351, 2013. doi:10.1016/j.ceramint.2012.10.024.
  • Reference19 Cao X.-Z., Wang C., Xue X.-X., Yang H., Preparation of tungsten boride ceramic by pressureless sintering, J. Inorg. Mater., 29, 498–502, 2014. doi:10.3724/SP.J.1077.2014.13411.
  • Reference20 Grabis J., Šteins I., Sīpola I., Rašmane D., formation of high temperature compounds in W-C-B system by reactive spark plasma sintering, Mater. Sci., 21, 369–371, 2015. doi:10.5755/j01.ms.21.3.7352. Reference21 Kuzenkova M.A., Kayuk V.G., Kislyj P.S., Sintering of commercial tungsten boride produced by boron carbide method, Poroshk. Met., 10, 32–36, 1977.
  • Reference22 Chen Y., He D., Qin J., Kou Z., Wang S., Wang J., Ultrahigh-pressure densification of nanocrystalline WB ceramics, J. Mater. Res., 25, 637–640, 2010. doi:10.1557/JMR.2010.0082.
  • Reference23 Hamamoto H., Obayashi M., Matsudaira T., Itoh H., Naka S., Preparation of tungsten boride sintered compact by hot-pressing., J. Japan Soc. Powder Powder Metall., 35, 128–130, 1988. doi:10.2497/jjspm.35.128.
  • Reference24 Fan C., Liu C., Peng F., Tan N., Tang M., Zhang Q., Wang Q., Li F., Wang J., Chen Y., Liang H., Guan S., Yang K., Liu J., Phase stability and incompressibility of tungsten boride (WB) researched by in-situ high pressure x-ray diffraction, Phys. B Condens. Matter., 521, 6–12, 2017. doi:10.1016/j.physb.2017.06.028.
  • Reference25 Jahangiri H., Öveçoğlu M.L., Determination of crystallite size, strain and solubility in mechanically alloyed W-xTi (x=0.5, 1.0, 4.0 and 10.0wt%) powder alloys, Mater. Lett., 178, 193–196, 2016. doi:10.1016/j.matlet.2016.04.158.
  • Reference26 Jung H.J., Sohn Y., Sung H.G., Hyun H.S., Shin W.G., Physicochemical properties of ball milled boron particles: dry vs. wet ball milling process, Powder Technol., 269, 548–553, 2015. doi:10.1016/j.powtec.2014.03.058.
  • Reference27 Zhang S., Khor K.A., Lü L., Preparation of Ti(C,N)-WC-TaC solid solution by mechanical alloying technique, J. Mater. Process. Tech., 48, 779–784, 1995. doi:10.1016/0924-0136(95)91416-Z.
  • Reference28 Ünal N., Öveçoğlu M.L., Effects of wet and dry milling conditions on properties of mechanically alloyed and sintered W–C and W–B4C–C composites, Powder Metall., 52, 254–265, 2009. doi:10.1179/003258909X12490463446434.
  • Reference29 Reid C.B., Forrester J.S., Goodshaw H.J., Kisi E.H., Suaning G.J., A study in the mechanical milling of alumina powder, Ceram. Int., 34, 1551–1556, 2008. doi:10.1016/j.ceramint.2007.05.003.
  • Reference30 Chen Y., He D., Qin J., Kou Z., Bi Y., Ultrasonic and hardness measurements for ultrahigh pressure prepared WB ceramics, Int. J. Refract. Met. Hard Mater., 29, 329–331, 2011. doi:10.1016/j.ijrmhm.2010.12.006.
  • Reference31 Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., Pressureless sintering of zirconium diboride, J. Am. Ceram. Soc., 89, 450–456, 2006. doi:10.1111/j.1551-2916.2005.00739.x.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Didem Ovalı

Duygu Ağaoğulları

Hasan Gökçe

M. Lütfi Öveçoğlu

Yayımlanma Tarihi 26 Mart 2018
Kabul Tarihi 4 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 3 Sayı: 1

Kaynak Göster

APA Ovalı, D., Ağaoğulları, D., Gökçe, H., Öveçoğlu, M. L. (2018). Effect of tungsten disilicide addition on tungsten boride based composites produced by milling-assisted pressureless sintering. Journal of Boron, 3(1), 42-50. https://doi.org/10.30728/boron.344402