Araştırma Makalesi
BibTex RIS Kaynak Göster

Theoretical study of B segregation in Mo(110)

Yıl 2018, Cilt: 3 Sayı: 3, 174 - 179, 30.11.2018
https://doi.org/10.30728/boron.411591

Öz

Using density
functional theory, we have calculated an atomic, electronic structures and
energetics of the B/Mo(110) surface and as well as from these calculations we
have also studied B-segregation in the Mo substrate. The calculated segregation
energy is negative which means that the non-segregated B-capped structure is
disallow to be stable comparing the B atoms occupy the second-layer of Mo
substrate. We have added new explanation for B segregation in Mo surface using
the concept of bond numbers between Mo and B atoms.



 



In the calculated
electronic band structure of B segregation in the Mo(110) surface, we have
determined  a chemical bonding between Mo
d-orbital and B p-orbitals which are clearly overlap. The other surface states
are contributed individual orbital of Mo and B atoms.

Kaynakça

  • Chen J.G., Menning C.A. and Zellner M.B., Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties, Surf. Sci. Rep., 63, 201-254, 2008.
  • Horn K. and Scheffler M., Electronic Structure, Handbook of Surface Science Amsterdam: North-Holland, 2000.
  • Somorjai G. A., Introduction to Surface Chemistry and Catalysis, Wiley New York, 1994.
  • Bonzel P., Bradshaw A.M. and Ertl G., Physics and Chemistry of Alkali Metal Adsorption Elsevier Amsterdam, 1989.
  • Bol’shov L A, Napartovich A.I., Naumovets A.G. and Fedorus A.G., Submonolayer films on the surface of metals, Sov. Phys. Usp. 20, 432-451, 1977.
  • Gleichweit C., Neiss C., Maisel S., Bauer U., Späth F., Höfert O., Vollnhals F., Drost M., Marbach H., Görling A., Steinrück H-P., and Papp C., Comparative study of the carbide-modified surfaces C/Mo(110) and C/Mo(100) using high-resolution x-ray photoelectron spectroscopy, Phys. Rev B, 92, 014114 2015.
  • Bauer U., Gleichweit C., Höfert O., Späth F., Gotterbarm K., Steinrück H-P., Papp C., Surface Science 000 1–9 article in press, 2018.
  • Petrova N. V. and Yakovkin I. N., Density-functional and Monte Carlo study of O/Mo(110): Structures and desorption, Phys. Rev. B. 76, 205401, 2007.
  • Zhou Y.G., Zu X.T., Nie J.L., and Gao F., Adsorption of O on Mo(110) surface from first-principles calculation, Eur. Phys. J. B 67, 27–34, 2009.
  • Arnold M., Sologuby S., Frie W., Hammer L. and Heinz K., Hydrogen-induced buckling of Mo(110) at submonolayer coverage, J. Phys.: Condens. Matter ,9, 6481–649, 1997.
  • Wang T., Tian X., Yang Y., Li Y-W., Wang J., Bellera M. and Jiao H., Structures of seven molybdenum surfaces and their coverage dependent hydrogen adsorption Phys.Chem.Chem.Phys. , 18, 6005-6012, 2016.
  • Altman M., Chung J. W., Estrup P. J., Kosterlitz J. M., Prybyla J., Sahu D. and Ying S. C., Phase transformations of the H/W(110) and H/Mo(110) surfaces, Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films 5, 1045 (1987).
  • Kohler B., Ruggerone P., Wilke S. and Scheffler M., Frustrated H-Induced Instability of Mo (110), Phys. Rev. Lett., 74, 1387, 1995.
  • Magkoev T. T., Turievl A. M., Tsidaeva N. I., Panteleev D. G., Vladimirov G. G. and Rump G. A., Adsorption of boron on a Mo(110) surface, J. Phys.: Condens. Matter 20, 485007, 2008.
  • Proskurin D., Nikolaychik A., Koval I.F. and Yakavkin I. N., Electronic structure of Sb monolayers on the Mo(110) surface, Physica Stat. Solidi b, 243, 584, 2006.
  • Cumberland R. W., Weinberger M. B., Gilman J. J., Clark S. M., Tolbert S. H. and Kaner R. B., Osmium Diboride, An Ultra-Incompressible, Hard Material, J. Am. Chem. Soc. 127, 7264-7265, 2005.
  • Chung H. Y., Weinberger M. B., Levine J. B., Kavner A., Yang J. M., Tolbert S. H. and Kaner R. B., Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science 316, 436, 2007.
  • Qin J. Q., He D. W., Wang J. H., Fang L. M., Lei L., Li Y. J., Hu J., Kou Z. L. and Bi Y., Is Rhenium Diboride a Superhard Material?, Adv. Mater. 20, 4780-4783, 2008.
  • Dubrovinskaia N., Dubrovinsky L. and Solozhenko V. L., Comment on "Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure", Science, 318, 1550c, 2007.
  • Li Q., Zhou D., Zheng W., Ma Y. and Chen C., Global Structural Optimization of Tungsten Borides, Phys. Rev. Lett. 110, 136403, 2013.
  • Mohammadi R., Lech A. T., Xie M., Weaver B. E., Yeung M. T., Tolbert S. H. and Kaner R. B., Tungsten tetraboride, an inexpensive superhard material, Proc. Natl. Acad. Sci. U. S. A. 108, 10958-10962, 2011.
  • Gu Q., Krauss F. and Steurer W., Transition Metal Borides: Superhard versus Ultra‐incompressible, Adv. Mater. 20, 3620-3626, 2008.
  • Niu H., Wang J., Chen X.-Q., Li D., Li Y., Lazar P., Podloucky R. and Kolmogorov A. N., Structure, bonding, and possible superhardness of CrB4, Phys. Rev. B, 85, 144116, 2012.
  • Li Q., Wang H. and Ma Y. M., Predicting new superhard phases, J. Superhard Mater. 32, 192-204, 2010.
  • Tian Y., Xu B. and Zhao Z., Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater. 33, 93-106, 2012.
  • Chung H. Y., Yang J. M., Tolbert S. H. and Kanerb R. B., Anisotropic mechanical properties of ultra-incompressible, hard osmium diboride, J. Mater. Res. 23, 1797-1801, 2008.
  • Tao Q., Zhao X., Chen Y., Li J., Li Q., Ma Y., Li J., Cui T., Zhu P. and Wang X., Enhanced Vickers hardness by quasi-3D boron network in MoB2, RSC Adv. 3, 18317-18322, 2013.
  • Zhang M., Wang H., Wang H., Cui T. and Ma Y., Structural Modifications and Mechanical Properties of Molybdenum Borides from First Principles, J. Phys. Chem. C 114, 6722-6725, 2010.
  • Okada S., Atoda T., Higashi I. and Takahashi Y., Preparation of single crystals of MoB2 by the aluminium-flux technique and some of their properties, J. Mater. Sci. 22, 2993-2999, 1987.
  • Kiessling R., The Crystal Structures of Molybdenum and Tungsten Borides, Acta Chem. Scand. 1, 893-916, 1947.
  • Kudaka K., Iizumi K., Sasaki T. and Okada S., Mechanochemical synthesis of MoB2 and Mo2B5, J. Alloys Compd. 315, 104-107, 2001.
  • Frotscher M., Klein W., Bauer J., Fang C. M., Halet J. F., Senyshyn A., Baehtz C. and Albert B.Z, M2B5 or M2B4? A Reinvestigation of the Mo/B and W/B System, Z. Anorg. Allg. Chem. 633, 2626-2630, 2007.
  • Zhou D., Wang J., Cui Q. and Li Q., Crystal structure and physical properties of Mo2B: First-principle calculations, J. App. Phys. 115, 113504, 2014.
  • Oganov A. R. and Solozhenko V. L., Boron: a hunt for superhard polymorphs, J. Superhard Mater. 31, 285, 2009.
  • Oganov A. R., Chen J., Gatti C., Ma Y., Glass C. W., Liu Z., Yu T., Kurakevych O. O. and Solozhenko V. L., Ionic high-pressure form of elemental boron, Nature 457, 863-867, 2009.
  • Zhou W., Sun H. and Chen C., Soft Bond-Deformation Paths in Superhard γ-Boron, Phys. Rev. Lett. 105, 215503, 2010.
  • G. Kresse and J. Furtmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mat. Sci.6, 15-50, 1996.
  • G. Kresse and J. Furtmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 1996.
  • Perdew J.P., Burke K. and Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865, 1996. Erratum Phys. Rev. Lett. 78, 1396, 1997.
  • Blochl P., Projector augmented-wave method, Phys. Rev. B 50, 17953, 1994.
  • Monkhorst H., Pack J., Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188, 1976.
  • Katahara K.W., Manghnani M.H., Fisher E.S., Pressure derivatives of the elastic moduli of BCC Ti-V-Cr, Nb-Mo and Ta-W alloys, J. Phys. F 9, 773, 1979.
  • Mattheiss L.F. and Hamann D.R., Linear augmented-plane-wave calculation of the structural properties of bulk Cr, Mo, and W, Phys. Rev. B 33, 823, 1986.
  • Zunger A. and Cohen M.L., Self-consistent pseudopotential calculation of the bulk properties of Mo and W, Phys. Rev. B 19, 568 ,1979, Erratum Phys. Rev. B 27, 1376, 1983.
  • Rotenberg E., Chung J. W. and Kevan S. D., Spin-Orbit Coupling Induced Surface Band Splitting in Li/W(110) and Li/Mo(110), Phys. Rev. Lett. 82, 4066-4069, 1999.
  • Yu Y., Xiao W., Wang J. and Wang L., Correction: First-Principles Study of Mo Segregation in MoNi(111): Effects of Chemisorbed Atomic Oxygen, Materials 9, 352, 2016.
  • Yu Y., Xiao W., Wang J.and Wang L., Understanding the surface segregation behavior of transition metals on Ni(111): a first-principles study, Phys.Chem.Chem.Phys. 18, 26616-26622, 2016.
Yıl 2018, Cilt: 3 Sayı: 3, 174 - 179, 30.11.2018
https://doi.org/10.30728/boron.411591

Öz

Kaynakça

  • Chen J.G., Menning C.A. and Zellner M.B., Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties, Surf. Sci. Rep., 63, 201-254, 2008.
  • Horn K. and Scheffler M., Electronic Structure, Handbook of Surface Science Amsterdam: North-Holland, 2000.
  • Somorjai G. A., Introduction to Surface Chemistry and Catalysis, Wiley New York, 1994.
  • Bonzel P., Bradshaw A.M. and Ertl G., Physics and Chemistry of Alkali Metal Adsorption Elsevier Amsterdam, 1989.
  • Bol’shov L A, Napartovich A.I., Naumovets A.G. and Fedorus A.G., Submonolayer films on the surface of metals, Sov. Phys. Usp. 20, 432-451, 1977.
  • Gleichweit C., Neiss C., Maisel S., Bauer U., Späth F., Höfert O., Vollnhals F., Drost M., Marbach H., Görling A., Steinrück H-P., and Papp C., Comparative study of the carbide-modified surfaces C/Mo(110) and C/Mo(100) using high-resolution x-ray photoelectron spectroscopy, Phys. Rev B, 92, 014114 2015.
  • Bauer U., Gleichweit C., Höfert O., Späth F., Gotterbarm K., Steinrück H-P., Papp C., Surface Science 000 1–9 article in press, 2018.
  • Petrova N. V. and Yakovkin I. N., Density-functional and Monte Carlo study of O/Mo(110): Structures and desorption, Phys. Rev. B. 76, 205401, 2007.
  • Zhou Y.G., Zu X.T., Nie J.L., and Gao F., Adsorption of O on Mo(110) surface from first-principles calculation, Eur. Phys. J. B 67, 27–34, 2009.
  • Arnold M., Sologuby S., Frie W., Hammer L. and Heinz K., Hydrogen-induced buckling of Mo(110) at submonolayer coverage, J. Phys.: Condens. Matter ,9, 6481–649, 1997.
  • Wang T., Tian X., Yang Y., Li Y-W., Wang J., Bellera M. and Jiao H., Structures of seven molybdenum surfaces and their coverage dependent hydrogen adsorption Phys.Chem.Chem.Phys. , 18, 6005-6012, 2016.
  • Altman M., Chung J. W., Estrup P. J., Kosterlitz J. M., Prybyla J., Sahu D. and Ying S. C., Phase transformations of the H/W(110) and H/Mo(110) surfaces, Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films 5, 1045 (1987).
  • Kohler B., Ruggerone P., Wilke S. and Scheffler M., Frustrated H-Induced Instability of Mo (110), Phys. Rev. Lett., 74, 1387, 1995.
  • Magkoev T. T., Turievl A. M., Tsidaeva N. I., Panteleev D. G., Vladimirov G. G. and Rump G. A., Adsorption of boron on a Mo(110) surface, J. Phys.: Condens. Matter 20, 485007, 2008.
  • Proskurin D., Nikolaychik A., Koval I.F. and Yakavkin I. N., Electronic structure of Sb monolayers on the Mo(110) surface, Physica Stat. Solidi b, 243, 584, 2006.
  • Cumberland R. W., Weinberger M. B., Gilman J. J., Clark S. M., Tolbert S. H. and Kaner R. B., Osmium Diboride, An Ultra-Incompressible, Hard Material, J. Am. Chem. Soc. 127, 7264-7265, 2005.
  • Chung H. Y., Weinberger M. B., Levine J. B., Kavner A., Yang J. M., Tolbert S. H. and Kaner R. B., Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science 316, 436, 2007.
  • Qin J. Q., He D. W., Wang J. H., Fang L. M., Lei L., Li Y. J., Hu J., Kou Z. L. and Bi Y., Is Rhenium Diboride a Superhard Material?, Adv. Mater. 20, 4780-4783, 2008.
  • Dubrovinskaia N., Dubrovinsky L. and Solozhenko V. L., Comment on "Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure", Science, 318, 1550c, 2007.
  • Li Q., Zhou D., Zheng W., Ma Y. and Chen C., Global Structural Optimization of Tungsten Borides, Phys. Rev. Lett. 110, 136403, 2013.
  • Mohammadi R., Lech A. T., Xie M., Weaver B. E., Yeung M. T., Tolbert S. H. and Kaner R. B., Tungsten tetraboride, an inexpensive superhard material, Proc. Natl. Acad. Sci. U. S. A. 108, 10958-10962, 2011.
  • Gu Q., Krauss F. and Steurer W., Transition Metal Borides: Superhard versus Ultra‐incompressible, Adv. Mater. 20, 3620-3626, 2008.
  • Niu H., Wang J., Chen X.-Q., Li D., Li Y., Lazar P., Podloucky R. and Kolmogorov A. N., Structure, bonding, and possible superhardness of CrB4, Phys. Rev. B, 85, 144116, 2012.
  • Li Q., Wang H. and Ma Y. M., Predicting new superhard phases, J. Superhard Mater. 32, 192-204, 2010.
  • Tian Y., Xu B. and Zhao Z., Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater. 33, 93-106, 2012.
  • Chung H. Y., Yang J. M., Tolbert S. H. and Kanerb R. B., Anisotropic mechanical properties of ultra-incompressible, hard osmium diboride, J. Mater. Res. 23, 1797-1801, 2008.
  • Tao Q., Zhao X., Chen Y., Li J., Li Q., Ma Y., Li J., Cui T., Zhu P. and Wang X., Enhanced Vickers hardness by quasi-3D boron network in MoB2, RSC Adv. 3, 18317-18322, 2013.
  • Zhang M., Wang H., Wang H., Cui T. and Ma Y., Structural Modifications and Mechanical Properties of Molybdenum Borides from First Principles, J. Phys. Chem. C 114, 6722-6725, 2010.
  • Okada S., Atoda T., Higashi I. and Takahashi Y., Preparation of single crystals of MoB2 by the aluminium-flux technique and some of their properties, J. Mater. Sci. 22, 2993-2999, 1987.
  • Kiessling R., The Crystal Structures of Molybdenum and Tungsten Borides, Acta Chem. Scand. 1, 893-916, 1947.
  • Kudaka K., Iizumi K., Sasaki T. and Okada S., Mechanochemical synthesis of MoB2 and Mo2B5, J. Alloys Compd. 315, 104-107, 2001.
  • Frotscher M., Klein W., Bauer J., Fang C. M., Halet J. F., Senyshyn A., Baehtz C. and Albert B.Z, M2B5 or M2B4? A Reinvestigation of the Mo/B and W/B System, Z. Anorg. Allg. Chem. 633, 2626-2630, 2007.
  • Zhou D., Wang J., Cui Q. and Li Q., Crystal structure and physical properties of Mo2B: First-principle calculations, J. App. Phys. 115, 113504, 2014.
  • Oganov A. R. and Solozhenko V. L., Boron: a hunt for superhard polymorphs, J. Superhard Mater. 31, 285, 2009.
  • Oganov A. R., Chen J., Gatti C., Ma Y., Glass C. W., Liu Z., Yu T., Kurakevych O. O. and Solozhenko V. L., Ionic high-pressure form of elemental boron, Nature 457, 863-867, 2009.
  • Zhou W., Sun H. and Chen C., Soft Bond-Deformation Paths in Superhard γ-Boron, Phys. Rev. Lett. 105, 215503, 2010.
  • G. Kresse and J. Furtmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mat. Sci.6, 15-50, 1996.
  • G. Kresse and J. Furtmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 1996.
  • Perdew J.P., Burke K. and Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865, 1996. Erratum Phys. Rev. Lett. 78, 1396, 1997.
  • Blochl P., Projector augmented-wave method, Phys. Rev. B 50, 17953, 1994.
  • Monkhorst H., Pack J., Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188, 1976.
  • Katahara K.W., Manghnani M.H., Fisher E.S., Pressure derivatives of the elastic moduli of BCC Ti-V-Cr, Nb-Mo and Ta-W alloys, J. Phys. F 9, 773, 1979.
  • Mattheiss L.F. and Hamann D.R., Linear augmented-plane-wave calculation of the structural properties of bulk Cr, Mo, and W, Phys. Rev. B 33, 823, 1986.
  • Zunger A. and Cohen M.L., Self-consistent pseudopotential calculation of the bulk properties of Mo and W, Phys. Rev. B 19, 568 ,1979, Erratum Phys. Rev. B 27, 1376, 1983.
  • Rotenberg E., Chung J. W. and Kevan S. D., Spin-Orbit Coupling Induced Surface Band Splitting in Li/W(110) and Li/Mo(110), Phys. Rev. Lett. 82, 4066-4069, 1999.
  • Yu Y., Xiao W., Wang J. and Wang L., Correction: First-Principles Study of Mo Segregation in MoNi(111): Effects of Chemisorbed Atomic Oxygen, Materials 9, 352, 2016.
  • Yu Y., Xiao W., Wang J.and Wang L., Understanding the surface segregation behavior of transition metals on Ni(111): a first-principles study, Phys.Chem.Chem.Phys. 18, 26616-26622, 2016.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Ceren Tayran

Yayımlanma Tarihi 30 Kasım 2018
Kabul Tarihi 17 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 3 Sayı: 3

Kaynak Göster

APA Tayran, C. (2018). Theoretical study of B segregation in Mo(110). Journal of Boron, 3(3), 174-179. https://doi.org/10.30728/boron.411591