Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 4 Sayı: 3, 153 - 157, 30.09.2019
https://doi.org/10.30728/boron.599559

Öz

Kaynakça

  • [1] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric field effect in atomically thin carbon films, Science 306, 666–669, 2004.
  • [2] Yao Y., Ye F., Qi X. L., Zhang S. C., Fang Z., Spin-orbit gap of graphene: Firstprinciples calculations, Phys. Rev. B 75, p. 041401(R), 2007.
  • [3] Boettger J. C. Trickey S. B., First-principles calculation of the spin-orbit splitting in graphene, Phys. Rev. B 75, p. 121402(R), 2007.
  • [4] Shakouri K., Masir M. R., Jellal A., Choubabi E., Peeters F., Effect of spin-orbit couplings in graphene with and without potential modulation, Phys. Rev. B 88, p. 115408, 2013.
  • [5] Kandemir B. S., Akay D., The effect of electron-A1g phonon coupling in spin–orbit-coupled graphene, Philos. Mag 97, 2225, 2017.
  • [6] Akay D., Trigonal warping and photo-induced effects on zone boundary phonon in monolayer graphene, Superlattices Microstruct., 117, 18-24, 2018.
  • [7] Kandemir B. S., Akay D., Photoinduced Dynamical Band Gap in Graphene: The Effects of Electron–Phonon and Spin–Orbit Interaction, Phys. Status Solidi B , 255(10), 2018.
  • [8] Auer C., Schürrer F., Ertler C., Hot phonon effects on the high-field transport in metallic carbon nanotubes, Phys. Rev. B, 74, 165409, 2006.
  • [9] Lazzeri M., Mauri F., Coupled dynamics of electrons and phonons in metallic nanotubes: Current saturation from hot-phonon generation, Phys. Rev. B 73, 165419, 2006.
  • [10] Xia F., Wang H., Xiao D., Dubey M., Ramasubramaniam A., Two‐Dimensional Material Nanophotonics, Nat. Photonics, 8 (12), 899–907, 2014.
  • [11] Gupta A., Sakthivel T., Seal S. Recent development in 2D materials beyond graphene, Prog. Mater. Sci., 73, 44–126, 2015.
  • [12] Niu T., Li A. From two‐dimensional materials to heterostructures, Prog. Surf. Sci., 90, 21–45, 2015.
  • [13] Mas‐Ballesté R., Gómez‐Navarro C., Gómez‐Herrero J., Zamora F. 2D Materials: To graphene and beyond, Nanoscale, 3 (1), 20–30, 2011.
  • [14] Koppens F. H. L., Mueller T., Avouris P., Ferrari A. C., Vitiello M. S., Polini M., Photode‐tectors Based on Graphene, Other Two‐Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 9 (10), 780–793, 2014.
  • [15] Mannix A. J., Zhou X. F., Kiraly B., Wood J. D., Alducin D., Myers B. D., Liu X., Fisher B. L., Santiago U., Guest J. R., Yacaman M. J., Ponce A., Oganov A. R., Hersam M. C., Guisinger N. P., Synthesis of borophenes: Anisotropic, two‐dimensional boron polymorphs., Sci, 350 (6267), 1513–1516, 2015.
  • [16] Verma S., Mawrie A., Ghosh T. K., Effect of electron-hole asymmetry on optical conductivity in 8−Pmmn borophene, Phys. Rev., B 96, 155418, 2017.
  • [17] Lopez-Bezanilla A., Littlewood P. B., Electronic properties of 8−Pmmn borophene, Phys. Rev. B 93 241405, 2016.
  • [18] Li Z., Cao T., Wu M., Louie S. G., Generation of anisotropic massless dirac fermions and asymmetric klein tunneling in few-layer black phosphorus superlattices, Nano Lett. 17, 2280, 2017.
  • [19] Zabolotskiy A. D., Lozovik Y. E., Strain-induced pseudomagnetic field in the Dirac semimetal borophene, Phys. Rev. B 94 165403, 2016.
  • [20] [20] Xiao H., Cao W., Ouyang T., Guo S., He C., Zhong J., Lattice thermal conductivity of borophene from first principle calculation, Sci. Rep. 7, 45986, 2017.

Triangular potential effects on the fermi velocity renormalization in 8-Pmmn borophene

Yıl 2019, Cilt: 4 Sayı: 3, 153 - 157, 30.09.2019
https://doi.org/10.30728/boron.599559

Öz

A
novel mechanism has been reported for the intrinsic electronic properties of
the
8-Pmmn Borophene
to investigate the electronic energy spectrum and spectrum parameters of the
structure. To examine the structure, we extract the energy spectrum of the
Hamiltonian for the monolayer borophene by using analytical method.
Additionally, for the intrinsic properties, first we obtained the bare Fermi
velocity
which findings of the study are consistent with experimental
results. After
obtained the bare state Fermi velocity
8-Pmmn borophene, dressed with triangular
potential and renormalized Fermi velocity has been obtained. Corresponding renormalized
Fermi velocity reshaped with the triangular potential which
has non-negligible
contribution to the intrinsic properties of borophene.
This finding has
important implications for developing electronic devices which made from the
boron due to increasing the controllability of the structure. 

Kaynakça

  • [1] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric field effect in atomically thin carbon films, Science 306, 666–669, 2004.
  • [2] Yao Y., Ye F., Qi X. L., Zhang S. C., Fang Z., Spin-orbit gap of graphene: Firstprinciples calculations, Phys. Rev. B 75, p. 041401(R), 2007.
  • [3] Boettger J. C. Trickey S. B., First-principles calculation of the spin-orbit splitting in graphene, Phys. Rev. B 75, p. 121402(R), 2007.
  • [4] Shakouri K., Masir M. R., Jellal A., Choubabi E., Peeters F., Effect of spin-orbit couplings in graphene with and without potential modulation, Phys. Rev. B 88, p. 115408, 2013.
  • [5] Kandemir B. S., Akay D., The effect of electron-A1g phonon coupling in spin–orbit-coupled graphene, Philos. Mag 97, 2225, 2017.
  • [6] Akay D., Trigonal warping and photo-induced effects on zone boundary phonon in monolayer graphene, Superlattices Microstruct., 117, 18-24, 2018.
  • [7] Kandemir B. S., Akay D., Photoinduced Dynamical Band Gap in Graphene: The Effects of Electron–Phonon and Spin–Orbit Interaction, Phys. Status Solidi B , 255(10), 2018.
  • [8] Auer C., Schürrer F., Ertler C., Hot phonon effects on the high-field transport in metallic carbon nanotubes, Phys. Rev. B, 74, 165409, 2006.
  • [9] Lazzeri M., Mauri F., Coupled dynamics of electrons and phonons in metallic nanotubes: Current saturation from hot-phonon generation, Phys. Rev. B 73, 165419, 2006.
  • [10] Xia F., Wang H., Xiao D., Dubey M., Ramasubramaniam A., Two‐Dimensional Material Nanophotonics, Nat. Photonics, 8 (12), 899–907, 2014.
  • [11] Gupta A., Sakthivel T., Seal S. Recent development in 2D materials beyond graphene, Prog. Mater. Sci., 73, 44–126, 2015.
  • [12] Niu T., Li A. From two‐dimensional materials to heterostructures, Prog. Surf. Sci., 90, 21–45, 2015.
  • [13] Mas‐Ballesté R., Gómez‐Navarro C., Gómez‐Herrero J., Zamora F. 2D Materials: To graphene and beyond, Nanoscale, 3 (1), 20–30, 2011.
  • [14] Koppens F. H. L., Mueller T., Avouris P., Ferrari A. C., Vitiello M. S., Polini M., Photode‐tectors Based on Graphene, Other Two‐Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 9 (10), 780–793, 2014.
  • [15] Mannix A. J., Zhou X. F., Kiraly B., Wood J. D., Alducin D., Myers B. D., Liu X., Fisher B. L., Santiago U., Guest J. R., Yacaman M. J., Ponce A., Oganov A. R., Hersam M. C., Guisinger N. P., Synthesis of borophenes: Anisotropic, two‐dimensional boron polymorphs., Sci, 350 (6267), 1513–1516, 2015.
  • [16] Verma S., Mawrie A., Ghosh T. K., Effect of electron-hole asymmetry on optical conductivity in 8−Pmmn borophene, Phys. Rev., B 96, 155418, 2017.
  • [17] Lopez-Bezanilla A., Littlewood P. B., Electronic properties of 8−Pmmn borophene, Phys. Rev. B 93 241405, 2016.
  • [18] Li Z., Cao T., Wu M., Louie S. G., Generation of anisotropic massless dirac fermions and asymmetric klein tunneling in few-layer black phosphorus superlattices, Nano Lett. 17, 2280, 2017.
  • [19] Zabolotskiy A. D., Lozovik Y. E., Strain-induced pseudomagnetic field in the Dirac semimetal borophene, Phys. Rev. B 94 165403, 2016.
  • [20] [20] Xiao H., Cao W., Ouyang T., Guo S., He C., Zhong J., Lattice thermal conductivity of borophene from first principle calculation, Sci. Rep. 7, 45986, 2017.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Defne Akay 0000-0001-8990-007X

Yayımlanma Tarihi 30 Eylül 2019
Kabul Tarihi 20 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 4 Sayı: 3

Kaynak Göster

APA Akay, D. (2019). Triangular potential effects on the fermi velocity renormalization in 8-Pmmn borophene. Journal of Boron, 4(3), 153-157. https://doi.org/10.30728/boron.599559