Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Synthesis and characterization of boron doped polysaccharide complex cross-linked by genipin

Yıl 2021, Cilt 6, Sayı 4, 379 - 386, 31.12.2021
https://doi.org/10.30728/boron.944413

Öz

Natural polysaccharides are environmentally friendly, renewable, biodegradable, fairly inexpensive materials. Performance properties of these materials can be altered by some chemical modifications such as crosslinking and hydrophobic substitution. Crosslinking creates intramolecular and intermolecular ether and ester bonds at random sites in sequential polysaccharide chains. Thus, while the resistance of the materials obtained against acidic environment and heat increases, their viscosity and solubility decreases. Genipin, a natural compound found in Gardenia fruit extract, is generally preferred as a crosslinker because it is non-toxic. In this study, it is aimed to prepare and characterize boron-doped complexes of unmodified starch and starch modified by crosslinking with genipin. For this purpose, scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis methods were used and solubility tests were also performed for the obtained powder complexes.

Kaynakça

  • Gonçalves, I., Hernández, D., Cruz, C., Lopes, J., Barra, A., Nunes, C., Silva, J.A.L., Ferreira, P. & Coimbra, M. A. (2021). Relevance of genipin networking on rheological, physical, and mechanical properties of starch-based formulations. Carbohydrate Polymers, 254, 117236.
  • Garcia, M. A. V. T., Garcia, C. F., & Faraco, A. A. G. (2020). Pharmaceutical and biomedical applications of native and modified starch: A review. Starch‐Stärke, 72(7-8), 1900270.
  • Sagnelli, D., Hebelstrup, K. H., Leroy, E., Rolland-Sabaté, A., Guilois, S., Kirkensgaard, J. J., Mortensen, K., Lourdin, D. & Blennow, A. (2016). Plant-crafted starches for bioplastics production. Carbohydrate polymers, 152, 398-408.
  • Durmus, Y., Anil, M., & Simsek, S. (2021). Effects of hazelnut skin, cross‐linked starch, and oxidized starch on wheat flour and dough quality. Journal of Food Processing and Preservation, 45(2), e14919.
  • Mirmoghtadaie, L., Kadivar, M., & Shahedi, M. (2009). Effects of cross-linking and acetylation on oat starch properties. Food Chemistry, 116(3), 709-713.
  • Olayemi, B., Isimi, C. Y., Ekere, K., Isaac, A. J., Okoh, J. E., & Emeje, M. (2021). Green Preparation of Citric Acid Crosslinked Starch for Improvement of Physicochemical Properties of Cyperus Starch. Turkish Journal of Pharmaceutical Sciences, 18(1), 34.
  • Lim, S., & Seib, P. A. (1993). Preparation and pasting properties of wheat and corn starch phosphates. Cereal chemistry, 70, 137-137.
  • Akinterinwa, A., Oladele, E., Adebayo, A., & Ajayi, O. (2020). Synthesis of Cross-Linked Carboxymethyl Legume Starch for Adsorption of Selected Heavy Metals from Aqueous Solutions. Adv. J. Chem.-Sect. A, 3, 594-611.
  • Acquarone, V. M., & Rao, M. A. (2003). Influence of sucrose on the rheology and granule size of cross-linked waxy maize starch dispersions heated at two temperatures. Carbohydrate Polymers, 51(4), 451-458.
  • El-Tahlawy, K., Venditti, R. A., & Pawlak, J. J. (2007). Aspects of the preparation of starch microcellular foam particles crosslinked with glutaraldehyde using a solvent exchange technique. Carbohydrate polymers, 67(3), 319-331.
  • Mehboob, S., Ali, T. M., Sheikh, M., & Hasnain, A. (2020). Effects of cross linking and/or acetylation on sorghum starch and film characteristics. International journal of biological macromolecules, 155, 786-794.
  • Hirsch, J. B., & Kokini, J. L. (2002). Understanding the mechanism of cross‐linking agents (POCl3, STMP, and EPI) through swelling behavior and pasting properties of cross‐linked waxy maize starches. Cereal Chemistry, 79(1), 102-107.
  • Wattanachant, S., Muhammad, K. M. A. T., Hashim, D. M., & Rahman, R. A. (2003). Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chemistry, 80(4), 463-471.
  • Omojola, M. O., Manu, N., & Thomas, S. A. (2012). Effect of cross linking on the physicochemical properties of cola starch. African Journal of Food Science, 6(4), 91-95.
  • Musa, B. H., & Hameed, N. J. (2021, March). Effect of crosslinking agent (glutaraldehyde) on the mechanical properties of (PVA/Starch) blend and (PVA/PEG) binary blend films. In Journal of Physics: Conference Series, 1795(1), 012064.
  • Sharma, V., Kaur, M., Sandhu, K. S., & Godara, S. K. (2020). Effect of cross-linking on physico-chemical, thermal, pasting, in vitro digestibility and film forming properties of Faba bean (Vicia faba L.) starch. International journal of biological macromolecules, 159, 243-249.
  • Dong, H., & Vasanthan, T. (2020). Amylase resistance of corn, faba bean, and field pea starches as influenced by three different phosphorylation (cross-linking) techniques. Food Hydrocolloids, 101, 105506.
  • Hoover, R., Hughes, T., Chung, H. J., & Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: A review. Food research international, 43(2), 399-413.
  • Tavares, L., Flores, E. E. E., Rodrigues, R. C., Hertz, P. F., & Noreña, C. P. Z. (2020). Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads. Food Hydrocolloids, 106, 105876.
  • Zanjani, M. A. K., Ehsani, M. R., Tarzi, B. G., & Sharifan, A. (2018). Promoting probiotics survival by microencapsualtion with Hylon starch and genipin cross-linked coatings in simulated gastro-intestinal condition and heat treatment. Iranian journal of pharmaceutical research: IJPR, 17(2), 753.
  • Khan, A., Salmieri, S., Fraschini, C., Bouchard, J., Riedl, B., & Lacroix, M. (2014). Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent. ACS Applied Materials & Interfaces, 6(17), 15232-15242.
  • Liu, Y., Cai, Z., Sheng, L., Ma, M., Xu, Q., & Jin, Y. (2019). Structure-property of crosslinked chitosan/silica composite films modified by genipin and glutaraldehyde under alkaline conditions. Carbohydrate polymers, 215, 348-357.
  • Cui, L., Jia, J., Guo, Y., Liu, Y., & Zhu, P. (2014). Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydrate polymers, 99, 31-38.
  • Chiono, V., Pulieri, E., Vozzi, G., Ciardelli, G., Ahluwalia, A., & Giusti, P. (2008). Genipin-crosslinked chitosan/gelatin blends for biomedical applications. Journal of Materials Science: Materials in Medicine, 19(2), 889-898.
  • Sung, H. W., Huang, R. N., Huang, L. L., & Tsai, C. C. (1999). In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. Journal of Biomaterials Science, Polymer Edition, 10(1), 63-78.
  • Tsai, C. C., Huang, R. N., Sung, H. W., & Liang, H. C. (2000). In vitro evaluation of the genotoxicity of a naturally occurring crosslinking agent (genipin) for biologic tissue fixation. Journal of biomedical materials research, 52(1), 58-65.
  • Adamiak, K., & Sionkowska, A. (2020). Current methods of collagen cross-linking. International Journal of Biological Macromolecules, 161, 550-560.
  • Wang, J., Guo, K., Fan, X., Feng, G., & Wei, C. (2018). Physicochemical properties of C-type starch from root tuber of Apios fortunei in comparison with maize, potato, and pea starches. Molecules, 23(9), 2132.
  • Shaaban, M. M. (2010). Role of boron in plant nutrition and human health. American Journal of Plant Physiology, 5(5), 224-240.
  • Angelova, L. V., Leskes, M., Berrie, B. H., & Weiss, R. G. (2015). Selective formation of organo, organo-aqueous, and hydro gel-like materials from partially hydrolysed poly (vinyl acetate) s based on different boron-containing crosslinkers. Soft matter, 11(25), 5060-5066.
  • Tantiwatcharothai, S., & Prachayawarakorn, J. (2020). Property improvement of antibacterial wound dressing from basil seed (O. basilicum L.) mucilage-ZnO nanocomposite by borax crosslinking. Carbohydrate polymers, 227, 115360.
  • Yin, Y., Li, J., Liu, Y., & Li, Z. (2005). Starch crosslinked with poly (vinyl alcohol) by boric acid. Journal of Applied Polymer Science, 96(4), 1394-1397.
  • Lu, H., Ji, N., Li, M., Wang, Y., Xiong, L., Zhou, L., Qui, L., Bian, X., & Sun, Q. (2019). Preparation of borax cross-linked starch nanoparticles for improvement of mechanical properties of maize starch films. Journal of agricultural and food chemistry, 67(10), 2916-2925.
  • Gao, J., Liu, Y., & Wang, F. (2001). Structure and properties of boron-containing bisphenol-A formaldehyde resin. European Polymer Journal, 37(1), 207-210.
  • Uslu, I., Daştan, H., Altaş, A., Yayli, A., Atakol, O., & Aksu, M. L. (2007). Preparation and Characterization of PVA/Boron Polymer Produced by an Electrospinning Technique. e-Polymers, 7(1).
  • Wang, J., Guo, K., Fan, X., Feng, G., & Wei, C. (2018). Physicochemical properties of C-type starch from root tuber of Apios fortunei in comparison with maize, potato, and pea starches. Molecules, 23(9), 2132.
  • Huber, C., Setoodeh Jahromy, S., Jordan, C., Schreiner, M., Harasek, M., Werner, A., & Winter, F. (2019). Boric acid: a high potential candidate for thermochemical energy storage. Energies, 12(6), 1086.
  • Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., Prentice, R.D.M., Swanston, J.S. & Tiller, S. A. (1998). Starch production and industrial use. Journal of the Science of Food and Agriculture, 77(3), 289-311.

Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu

Yıl 2021, Cilt 6, Sayı 4, 379 - 386, 31.12.2021
https://doi.org/10.30728/boron.944413

Öz

Doğal polisakkaritler; çevre dostu, yenilenebilir, biyobozunur, oldukça ucuz malzemelerdir. Performans özellikleri çapraz bağlanma ve hidrofobik sübstitüsyon gibi bazı kimyasal modifikasyonlar ile iyileştirilebilir. Çapraz bağlanma ile ardışık polisakkarit zincirlerinde rastgele bölgelerde molekül içi ve moleküller arası eter ve ester bağları oluşur. Böylece elde edilen malzemelerin asidik ortama ve ısıya karşı dirençleri artarken, viskozite ve çözünürlükleri azalır. Gardenya meyve özünde bulunan ve doğal bir bileşik olan genipin genellikle toksik özellik göstermediği için çapraz bağlayıcı olarak tercih edilmektedir. Bu çalışmada; genipin ile çapraz bağlanarak modifiye edilmiş nişasta ve modifiye edilmemiş nişastanun bor katkılı komplekslerinin hazırlanması ve karakterizasyonlarının yapılması amaçlanmıştır. Bu amaçla taramalı elektron mikroskopu, X-ışınları kırınımı, Fourier dönüşümlü kızılötesi spektroskopisi, termogravimetrik analiz yöntemleri kullanılmış ve elde edilen toz halindeki kompleksler için çözünürlük testleri de gerçekleştirilmiştir.

Kaynakça

  • Gonçalves, I., Hernández, D., Cruz, C., Lopes, J., Barra, A., Nunes, C., Silva, J.A.L., Ferreira, P. & Coimbra, M. A. (2021). Relevance of genipin networking on rheological, physical, and mechanical properties of starch-based formulations. Carbohydrate Polymers, 254, 117236.
  • Garcia, M. A. V. T., Garcia, C. F., & Faraco, A. A. G. (2020). Pharmaceutical and biomedical applications of native and modified starch: A review. Starch‐Stärke, 72(7-8), 1900270.
  • Sagnelli, D., Hebelstrup, K. H., Leroy, E., Rolland-Sabaté, A., Guilois, S., Kirkensgaard, J. J., Mortensen, K., Lourdin, D. & Blennow, A. (2016). Plant-crafted starches for bioplastics production. Carbohydrate polymers, 152, 398-408.
  • Durmus, Y., Anil, M., & Simsek, S. (2021). Effects of hazelnut skin, cross‐linked starch, and oxidized starch on wheat flour and dough quality. Journal of Food Processing and Preservation, 45(2), e14919.
  • Mirmoghtadaie, L., Kadivar, M., & Shahedi, M. (2009). Effects of cross-linking and acetylation on oat starch properties. Food Chemistry, 116(3), 709-713.
  • Olayemi, B., Isimi, C. Y., Ekere, K., Isaac, A. J., Okoh, J. E., & Emeje, M. (2021). Green Preparation of Citric Acid Crosslinked Starch for Improvement of Physicochemical Properties of Cyperus Starch. Turkish Journal of Pharmaceutical Sciences, 18(1), 34.
  • Lim, S., & Seib, P. A. (1993). Preparation and pasting properties of wheat and corn starch phosphates. Cereal chemistry, 70, 137-137.
  • Akinterinwa, A., Oladele, E., Adebayo, A., & Ajayi, O. (2020). Synthesis of Cross-Linked Carboxymethyl Legume Starch for Adsorption of Selected Heavy Metals from Aqueous Solutions. Adv. J. Chem.-Sect. A, 3, 594-611.
  • Acquarone, V. M., & Rao, M. A. (2003). Influence of sucrose on the rheology and granule size of cross-linked waxy maize starch dispersions heated at two temperatures. Carbohydrate Polymers, 51(4), 451-458.
  • El-Tahlawy, K., Venditti, R. A., & Pawlak, J. J. (2007). Aspects of the preparation of starch microcellular foam particles crosslinked with glutaraldehyde using a solvent exchange technique. Carbohydrate polymers, 67(3), 319-331.
  • Mehboob, S., Ali, T. M., Sheikh, M., & Hasnain, A. (2020). Effects of cross linking and/or acetylation on sorghum starch and film characteristics. International journal of biological macromolecules, 155, 786-794.
  • Hirsch, J. B., & Kokini, J. L. (2002). Understanding the mechanism of cross‐linking agents (POCl3, STMP, and EPI) through swelling behavior and pasting properties of cross‐linked waxy maize starches. Cereal Chemistry, 79(1), 102-107.
  • Wattanachant, S., Muhammad, K. M. A. T., Hashim, D. M., & Rahman, R. A. (2003). Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chemistry, 80(4), 463-471.
  • Omojola, M. O., Manu, N., & Thomas, S. A. (2012). Effect of cross linking on the physicochemical properties of cola starch. African Journal of Food Science, 6(4), 91-95.
  • Musa, B. H., & Hameed, N. J. (2021, March). Effect of crosslinking agent (glutaraldehyde) on the mechanical properties of (PVA/Starch) blend and (PVA/PEG) binary blend films. In Journal of Physics: Conference Series, 1795(1), 012064.
  • Sharma, V., Kaur, M., Sandhu, K. S., & Godara, S. K. (2020). Effect of cross-linking on physico-chemical, thermal, pasting, in vitro digestibility and film forming properties of Faba bean (Vicia faba L.) starch. International journal of biological macromolecules, 159, 243-249.
  • Dong, H., & Vasanthan, T. (2020). Amylase resistance of corn, faba bean, and field pea starches as influenced by three different phosphorylation (cross-linking) techniques. Food Hydrocolloids, 101, 105506.
  • Hoover, R., Hughes, T., Chung, H. J., & Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: A review. Food research international, 43(2), 399-413.
  • Tavares, L., Flores, E. E. E., Rodrigues, R. C., Hertz, P. F., & Noreña, C. P. Z. (2020). Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads. Food Hydrocolloids, 106, 105876.
  • Zanjani, M. A. K., Ehsani, M. R., Tarzi, B. G., & Sharifan, A. (2018). Promoting probiotics survival by microencapsualtion with Hylon starch and genipin cross-linked coatings in simulated gastro-intestinal condition and heat treatment. Iranian journal of pharmaceutical research: IJPR, 17(2), 753.
  • Khan, A., Salmieri, S., Fraschini, C., Bouchard, J., Riedl, B., & Lacroix, M. (2014). Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent. ACS Applied Materials & Interfaces, 6(17), 15232-15242.
  • Liu, Y., Cai, Z., Sheng, L., Ma, M., Xu, Q., & Jin, Y. (2019). Structure-property of crosslinked chitosan/silica composite films modified by genipin and glutaraldehyde under alkaline conditions. Carbohydrate polymers, 215, 348-357.
  • Cui, L., Jia, J., Guo, Y., Liu, Y., & Zhu, P. (2014). Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydrate polymers, 99, 31-38.
  • Chiono, V., Pulieri, E., Vozzi, G., Ciardelli, G., Ahluwalia, A., & Giusti, P. (2008). Genipin-crosslinked chitosan/gelatin blends for biomedical applications. Journal of Materials Science: Materials in Medicine, 19(2), 889-898.
  • Sung, H. W., Huang, R. N., Huang, L. L., & Tsai, C. C. (1999). In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. Journal of Biomaterials Science, Polymer Edition, 10(1), 63-78.
  • Tsai, C. C., Huang, R. N., Sung, H. W., & Liang, H. C. (2000). In vitro evaluation of the genotoxicity of a naturally occurring crosslinking agent (genipin) for biologic tissue fixation. Journal of biomedical materials research, 52(1), 58-65.
  • Adamiak, K., & Sionkowska, A. (2020). Current methods of collagen cross-linking. International Journal of Biological Macromolecules, 161, 550-560.
  • Wang, J., Guo, K., Fan, X., Feng, G., & Wei, C. (2018). Physicochemical properties of C-type starch from root tuber of Apios fortunei in comparison with maize, potato, and pea starches. Molecules, 23(9), 2132.
  • Shaaban, M. M. (2010). Role of boron in plant nutrition and human health. American Journal of Plant Physiology, 5(5), 224-240.
  • Angelova, L. V., Leskes, M., Berrie, B. H., & Weiss, R. G. (2015). Selective formation of organo, organo-aqueous, and hydro gel-like materials from partially hydrolysed poly (vinyl acetate) s based on different boron-containing crosslinkers. Soft matter, 11(25), 5060-5066.
  • Tantiwatcharothai, S., & Prachayawarakorn, J. (2020). Property improvement of antibacterial wound dressing from basil seed (O. basilicum L.) mucilage-ZnO nanocomposite by borax crosslinking. Carbohydrate polymers, 227, 115360.
  • Yin, Y., Li, J., Liu, Y., & Li, Z. (2005). Starch crosslinked with poly (vinyl alcohol) by boric acid. Journal of Applied Polymer Science, 96(4), 1394-1397.
  • Lu, H., Ji, N., Li, M., Wang, Y., Xiong, L., Zhou, L., Qui, L., Bian, X., & Sun, Q. (2019). Preparation of borax cross-linked starch nanoparticles for improvement of mechanical properties of maize starch films. Journal of agricultural and food chemistry, 67(10), 2916-2925.
  • Gao, J., Liu, Y., & Wang, F. (2001). Structure and properties of boron-containing bisphenol-A formaldehyde resin. European Polymer Journal, 37(1), 207-210.
  • Uslu, I., Daştan, H., Altaş, A., Yayli, A., Atakol, O., & Aksu, M. L. (2007). Preparation and Characterization of PVA/Boron Polymer Produced by an Electrospinning Technique. e-Polymers, 7(1).
  • Wang, J., Guo, K., Fan, X., Feng, G., & Wei, C. (2018). Physicochemical properties of C-type starch from root tuber of Apios fortunei in comparison with maize, potato, and pea starches. Molecules, 23(9), 2132.
  • Huber, C., Setoodeh Jahromy, S., Jordan, C., Schreiner, M., Harasek, M., Werner, A., & Winter, F. (2019). Boric acid: a high potential candidate for thermochemical energy storage. Energies, 12(6), 1086.
  • Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., Prentice, R.D.M., Swanston, J.S. & Tiller, S. A. (1998). Starch production and industrial use. Journal of the Science of Food and Agriculture, 77(3), 289-311.

Ayrıntılar

Birincil Dil Türkçe
Konular Temel Bilimler
Bölüm Research Makaleler
Yazarlar

Elif ANT BURSALI (Sorumlu Yazar)
DOKUZ EYLÜL ÜNİVERSİTESİ
0000-0002-4040-3723
Türkiye

Teşekkür Çalışmam süresince değerli katkılarından dolayı Prof. Dr. Mürüvvet Yurdakoç ve ayrıca yardımları için Burcu Yertep’ e teşekkür ederim.
Yayımlanma Tarihi 31 Aralık 2021
Yayınlandığı Sayı Yıl 2021, Cilt 6, Sayı 4

Kaynak Göster

Bibtex @araştırma makalesi { boron944413, journal = {Journal of Boron}, issn = {2149-9020}, eissn = {2667-8438}, address = {}, publisher = {TENMAK Bor Araştırma Enstitüsü}, year = {2021}, volume = {6}, number = {4}, pages = {379 - 386}, doi = {10.30728/boron.944413}, title = {Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu}, key = {cite}, author = {Ant Bursalı, Elif} }
APA Ant Bursalı, E. (2021). Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu . Journal of Boron , 6 (4) , 379-386 . DOI: 10.30728/boron.944413
MLA Ant Bursalı, E. "Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu" . Journal of Boron 6 (2021 ): 379-386 <https://dergipark.org.tr/tr/pub/boron/issue/67341/944413>
Chicago Ant Bursalı, E. "Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu". Journal of Boron 6 (2021 ): 379-386
RIS TY - JOUR T1 - Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu AU - Elif Ant Bursalı Y1 - 2021 PY - 2021 N1 - doi: 10.30728/boron.944413 DO - 10.30728/boron.944413 T2 - Journal of Boron JF - Journal JO - JOR SP - 379 EP - 386 VL - 6 IS - 4 SN - 2149-9020-2667-8438 M3 - doi: 10.30728/boron.944413 UR - https://doi.org/10.30728/boron.944413 Y2 - 2021 ER -
EndNote %0 Bor Dergisi Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu %A Elif Ant Bursalı %T Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu %D 2021 %J Journal of Boron %P 2149-9020-2667-8438 %V 6 %N 4 %R doi: 10.30728/boron.944413 %U 10.30728/boron.944413
ISNAD Ant Bursalı, Elif . "Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu". Journal of Boron 6 / 4 (Aralık 2021): 379-386 . https://doi.org/10.30728/boron.944413
AMA Ant Bursalı E. Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu. Journal of Boron. 2021; 6(4): 379-386.
Vancouver Ant Bursalı E. Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu. Journal of Boron. 2021; 6(4): 379-386.
IEEE E. Ant Bursalı , "Genipin ile çapraz bağlı bor katkılı polisakkarit kompleks sentezi ve karakterizasyonu", Journal of Boron, c. 6, sayı. 4, ss. 379-386, Ara. 2021, doi:10.30728/boron.944413

© 2016 Her Hakkı Saklıdır.
TENMAK Bor Araştırma Enstitüsü