Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Çinko boratın partikül boyutu, katkı oranı ve kimyasal yapısının polivinil klorürün termal ve mekanik özelliklerine etkisi

Yıl 2021, Cilt 6, Sayı 4, 387 - 394, 31.12.2021
https://doi.org/10.30728/boron.961843

Öz

Çinko borat (ZB), alev geciktirici ve duman bastırıcı bir bor bileşiğidir. Aleve dayanıklı polimer kompozitler elde etmek için yaygın olarak kullanılır. Polivinil klorür (PVC), çoğunlukla kablo izolasyonu, kalem ve kapı, borular, döşemeler, oyuncaklar vb. için kullanılan ticari açıdan önemli polimerlerden biridir. Öte yandan PVC, yangın sırasında bozunma ürünleri olarak zehirli gazlar açığa çıkarır. Çinko borat katkısının bu soruna bir çözüm olduğu düşünülmektedir. Ancak bu çözüm yeni bir soruna yol açar. Çinko borat, PVC'nin mekanik özelliklerini etkiler. Kompozitlerin mekanik özellikleri çekme testi, darbe testi, sertlik testi ile belirlenmiş ve dinamik mekanik analiz (DMA) ile termomekanik davranışları tespit edilmiştir. Bu çalışmada çinko boratın katkısını optimize etmek için, farklı formülasyonlarda (2ZnO·3B2O3·3.5H2O ve 4ZnO·B2O3·H2O), farklı katkı oranlarında (ağırlıkça %1 ve %5) ve farklı partikül boyutlarında toz PVC yapısına (nano-boyutlu ve mikro-boyutlu) eklenmiş ve her bir kompozitin mekanik ve termomekanik özellikleri incelenmiştir.

Kaynakça

  • Karama, J.P.B., Béré, A., Lemonon, J., Daho, T., Dissa, A., Rogaume, Y. & Koulidiati, J. (2013). Modeling the emission of hydrogen chloride and free chlorine from the thermal treatment of polyvinyl chloride (PVC) based plastic materials. Journal of Analytical and Applied Pyrolysis, 101, 209‒214, ISSN 0165‒2370. https://doi.org/10.1016/j.jaap.2013.01.006
  • Bockhorn, H., Hornung, A. & Hornung, U. (1998). Stepwise pyrolysis for raw material recovery from plastic waste. Journal of Analytical and Applied Pyrolysis, 46, 1‒13. https://doi.org/10.1016/S0165-2370(98)00066-7
  • Zhang, M., Buekens, A., Jiang, X. & Li, X. (2015). Dioxins and polyvinylchloride in combustion and fires. Waste Management & Research, 33(7), 630–643. https://doi.org/10.1177/0734242X15590651
  • Polat, S. & Sayan, P. (2020). Box–Behnken experimental design for zinc borate Zn2B6O11·7H2O. Boron, 5(3), 152–161.
  • Cusack, P. A. & Killmeyer, A. J. (1990). Hazards Identifications Prevention: Fire and Polymers, Nelson G.L. (Ed.), American Chemical Society, Washington, DC, p. 199.
  • Schubert, D.M. (2019). Hydrated Zinc Borates and Their Industrial Use. Molecules, 24(13), 2419.
  • İpek, Y. & Ertekin, Ö. (2021). Developing Antibacterial Cotton Fabric with Zinc Borate Impregnation Process. Fibers and Polymers, 22(5). https://doi.org/10.1007/s12221-021-0670-1
  • Çakal, G. Ö., Baltacı, B., Bayram, G., Özkar, S. & Eroglu, I. (2020). Synthesis of zinc borate using water soluble additives: Kinetics and product characterization. Journal of Crystal Growth, 533, 125461. https://doi.org/10.1016/j.jcrysgro.2019.125461
  • Ata, O. N., Şayan, E. & Engin, B. (2011). Optimization and modeling of zinc borate (2ZnO·3B2O3·3.5H2O) production with the reaction of boric acid and zinc oxide. Journal of Industrial and Engineering Chemistry, 17(3), 493‒497. htps://doi.org/10.1016/j.jiec.2010.09.018 Shen, K. K., Kochesfahani, S. & Jouffret, F. (2008). Zinc borates as multifunctional polymer additives. Polym. Adv. Technol,. 19, 469–474. https://doi.org/10.1002/pat.1119
  • Wang, X., Li, L., Tong, Y., Dai, Y. & Chen, W. (2021). Synthesis of Core/Shell Structured Zinc Borate/Silica and Its Surface Charring for Enhanced Flame Retardant Properties. Polymer Degradation and Stability, 183, 109432. https://doi.org/10.1016/j.polymdegradstab.2020.109432
  • Fang, Y., Wang Q., Guo C., Song Y. & Cooper P. A. (2013). Effect of zinc borate and wood flour on thermal degradation and fire retardancy of Polyvinyl chloride (PVC) composites. Journal of Analytical and Applied Pyrolysis, 100, 230‒236. https://doi.org/10.1016/j.jaap.2012.12.028
  • Giudice, C. A. & Benitez, J. C. (2001). Zinc borates as flame-retardant pigments in chlorine-containing coating. Progress in Organic Coatings, 42 (1/2), 82‒88.
  • Meinier, R., Sonnier, R., Zavaleta, P., Suard, S. & Ferry L. (2018). Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. Journal of Hazardous Materials, 342, 306‒316, ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2017.08.027.
  • Dogan, M., Dilem Dogan, S., Atabek Savas, L., Ozcelik, G., Tayfun, U. (2021). Flame retardant effect of boron compounds in polymeric materials. Composites Part B: Engineering, 222, 109088, ISSN 1359-8368. https://doi.org/10.1016/j.compositesb.2021.109088.
  • Araby, S., Philips, B., Meng, Q., Ma, J., Laoui, T. & Wang, C. H. (2021). Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Composites Part B: Engineering, 212, 108675, ISSN 1359-8368. https://doi.org/10.1016/j.compositesb.2021.108675.
  • Liu, P., Chen, W., Liu, Y., Bai, S. & Wang, Q. (2014). Thermal melt processing to prepare halogen-free flame retardant poly(vinyl alcohol). Polymer Degradation and Stability, 109, 261-269, ISSN 0141-3910. https://doi.org/10.1016/j.polymdegradstab.2014.07.021.
  • Pi, H., Guo, S. & Ning Y. (2003). Mechanochemical improvement of the flame-retardant and mechanical properties of zinc borate and zinc borate–aluminum trihydrate-filled poly(vinyl chloride). Journal of Applied Polymer Science, 89, 753–762. https://doi.org/10.1002/app.12202
  • Zhang, Z., Wu, W., Zhang, M., Qu, J., Shi, L., Qu, H., Xu, J. (2017). Hydrothermal synthesis of 4ZnO·B2O3·H2O/RGO hybrid material and its flame retardant behavior in flexible PVC and magnesium hydroxide composites. Applied Surface Science, 425, 896‒904, ISSN 0169-4332. https://doi.org/10.1016/j.apsusc.2017.07.101.
  • Chan-Hom, T., Yamsaengsung, W., Prapagdee, B., Markpin, T. & Sombatsompop N. (2016). Flame retardancy, antifungal efficacies, and physical–mechanical properties for wood/polymer composites containing zinc borate. Fire and Materials, 41, 675–687. https://doi.org/10.1002/fam.2408
  • Erdoğdu, C. A., Atakul, S., Balköse D. & Ülkü S. (2008). Development of Synergistic Heat Stabilizers for PVC from Zinc Borate-Zinc Phosphate. Chemical Engineering Communications, 196:1-2, 148-160. https://doi.org/10.1080/00986440802293148
  • Mergen, A., İpek, Y., Bölek, H. & Öksüz, M. (2012). Production of nano zinc borate (4ZnO·B2O3·H2O) and its effect on PVC. Journal of the European Ceramic Society, 32, 2001–2005. https://doi.org/10.1016/j.jeurceramsoc.2011.10.034
  • Thomas, N.L. (2003). Zinc compounds as flame retardants and smoke suppressants for rigid PVC. Plastics, Rubber and Composites, 32(8‒9), 413‒419. https://doi.org/10.1179/146580103225004063
  • Ning, Y. & Guo, S. (2000). Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC. Journal of Applied Polymer Science, 77, 3119 –3127. https://doi.org/10.1016/j.jaap.2012.12.028
  • Borukaev, T.A., Shaov, A. K., Kharaev, A.M. & Borodulin, A.S. (2020). Investigation of the effect of zinc borate on the physic mechanical properties of PVC plastic. Materials Science and Engineering, 934, 012001. https://doi.org/10.1088/1757-899X/934/1/012001
  • Ismail, A.F., Khulbe, K.C. & Matsuura, T. (2019). Chapter 3 - RO Membrane Characterization, Editor(s): Ahmad Fauzi Ismail, Kailash Chandra Khulbe, Takeshi Matsuura, Reverse Osmosis, Elsevier, 57‒90, ISBN 9780128114681, https://doi.org/10.1016/B978-0-12-811468-1.00003-7
  • Çetin, A., Erzengin, S.G. & Alp, F.B. (2019). Various Combinations of Flame Retardants for Poly(vinyl chloride). Open Chem., 17, 980–987. https://doi.org/10.1515/chem-2019-0105
  • Kilinc, M., Cakal, G.O., Bayram, G., Eroglu, I. & Özkar, S. (2015). Flame retardancy and mechanical properties of pet-based composites containing phosphorus and boron-based additives. J. Appl. Polym. Sci., 132(22), 42016.
  • Yerleşen, U. & Taşdemir, M. (2015). Effect of Zinc Oxide and Zinc Borate on Mechanical Properties of High Density Polyethylene. Romanian Journal of Materials, 45 (3), 240‒243.
  • George, S., Neelakanthan, N.R., Varughese, K.T. & Thomas, S. (1997). J Polym Sci Polym Phys Ed, 35, 2309. https://doi.org/10.1002/(SICI)1099-0488(199710)35:14<2309::AID-POLB11>3.0.CO;2-G
  • Varughese, K.T., Nando, G.B., De, P.P. & De, S.K. (1988). J Mater Sci, 23, 3894 https://doi.org/10.1007/BF01106811
  • Senake Perera, M.C., Ishiaku, U.S. & Mohd. Ishak, Z.A. (2001). Characterisation of PVC/NBR and PVC/ENR50 binary blends and PVC/ENR50/NBR ternary blends by DMA and solid state NMR. European Polymer Journal, 37(1), 167‒178, ISSN 0014‒3057. https://doi.org/10.1016/S0014-3057(00)00085-9
  • Shi, X., Yuan, L., Sun, X., Chang, C. & Sun, J. (2008). Controllable Synthesis of 4ZnO·B2O3·H2O Nano-/Microstructures with Different Morphologies: Influence of Hydrothermal Reaction Parameters and Formation Mechanism. J. Phys. Chem. C, 112(10), 3558–3567.
  • İpek, Y. (2020). Effect of surfactant types on particle size and morphology of flame-retardant zinc borate powder. Turk J Chem, 44, 214–223. https://doi.org/10.3906/kim-1906-49
  • Li, S., Long, B., Wang, Z., Tian, Y., Zheng, Y. & Zhang, Q. (2010). Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene. Journal of Solid State Chemistry, 183(4), 957‒962, ISSN 0022‒4596. https://doi.org/10.1016/j.jssc.2010.02.017

Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride

Yıl 2021, Cilt 6, Sayı 4, 387 - 394, 31.12.2021
https://doi.org/10.30728/boron.961843

Öz

Zinc borate (ZB) is a flame retardant and smoke supressant compound of boron. It is widely used to achieve flame resistant polymer composites. Polyvinyl chloride (PVC) is one of the commercially important polymers mostly used for cable insulating, pen and door, pipes, floorings, toys etc.. On the other hand, PVC relases toxic gases during fire as decomposition products. Zinc borate doping is thought to be a solution for this problem. However, this solution leads a new problem. Zinc borate effects the mechanical properties of PVC. Mechanical properties of composites were determined by tensile test, impact test, hardness test and thermomechanical behaviours were detected with dynamic mechanical analysis (DMA). In the present study, to optimize the contribution of zinc borate, the powder with different formulations (2ZnO·3B2O3·3.5H2O and 4ZnO·B2O3·H2O), with different additive ratios (1% and 5% by weight) and different particle sizes (nano‒sized and micro‒sized) were added to the PVC structure and the mechanical and thermomechanical properties of each composite were investigated.

Kaynakça

  • Karama, J.P.B., Béré, A., Lemonon, J., Daho, T., Dissa, A., Rogaume, Y. & Koulidiati, J. (2013). Modeling the emission of hydrogen chloride and free chlorine from the thermal treatment of polyvinyl chloride (PVC) based plastic materials. Journal of Analytical and Applied Pyrolysis, 101, 209‒214, ISSN 0165‒2370. https://doi.org/10.1016/j.jaap.2013.01.006
  • Bockhorn, H., Hornung, A. & Hornung, U. (1998). Stepwise pyrolysis for raw material recovery from plastic waste. Journal of Analytical and Applied Pyrolysis, 46, 1‒13. https://doi.org/10.1016/S0165-2370(98)00066-7
  • Zhang, M., Buekens, A., Jiang, X. & Li, X. (2015). Dioxins and polyvinylchloride in combustion and fires. Waste Management & Research, 33(7), 630–643. https://doi.org/10.1177/0734242X15590651
  • Polat, S. & Sayan, P. (2020). Box–Behnken experimental design for zinc borate Zn2B6O11·7H2O. Boron, 5(3), 152–161.
  • Cusack, P. A. & Killmeyer, A. J. (1990). Hazards Identifications Prevention: Fire and Polymers, Nelson G.L. (Ed.), American Chemical Society, Washington, DC, p. 199.
  • Schubert, D.M. (2019). Hydrated Zinc Borates and Their Industrial Use. Molecules, 24(13), 2419.
  • İpek, Y. & Ertekin, Ö. (2021). Developing Antibacterial Cotton Fabric with Zinc Borate Impregnation Process. Fibers and Polymers, 22(5). https://doi.org/10.1007/s12221-021-0670-1
  • Çakal, G. Ö., Baltacı, B., Bayram, G., Özkar, S. & Eroglu, I. (2020). Synthesis of zinc borate using water soluble additives: Kinetics and product characterization. Journal of Crystal Growth, 533, 125461. https://doi.org/10.1016/j.jcrysgro.2019.125461
  • Ata, O. N., Şayan, E. & Engin, B. (2011). Optimization and modeling of zinc borate (2ZnO·3B2O3·3.5H2O) production with the reaction of boric acid and zinc oxide. Journal of Industrial and Engineering Chemistry, 17(3), 493‒497. htps://doi.org/10.1016/j.jiec.2010.09.018 Shen, K. K., Kochesfahani, S. & Jouffret, F. (2008). Zinc borates as multifunctional polymer additives. Polym. Adv. Technol,. 19, 469–474. https://doi.org/10.1002/pat.1119
  • Wang, X., Li, L., Tong, Y., Dai, Y. & Chen, W. (2021). Synthesis of Core/Shell Structured Zinc Borate/Silica and Its Surface Charring for Enhanced Flame Retardant Properties. Polymer Degradation and Stability, 183, 109432. https://doi.org/10.1016/j.polymdegradstab.2020.109432
  • Fang, Y., Wang Q., Guo C., Song Y. & Cooper P. A. (2013). Effect of zinc borate and wood flour on thermal degradation and fire retardancy of Polyvinyl chloride (PVC) composites. Journal of Analytical and Applied Pyrolysis, 100, 230‒236. https://doi.org/10.1016/j.jaap.2012.12.028
  • Giudice, C. A. & Benitez, J. C. (2001). Zinc borates as flame-retardant pigments in chlorine-containing coating. Progress in Organic Coatings, 42 (1/2), 82‒88.
  • Meinier, R., Sonnier, R., Zavaleta, P., Suard, S. & Ferry L. (2018). Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. Journal of Hazardous Materials, 342, 306‒316, ISSN 0304-3894. https://doi.org/10.1016/j.jhazmat.2017.08.027.
  • Dogan, M., Dilem Dogan, S., Atabek Savas, L., Ozcelik, G., Tayfun, U. (2021). Flame retardant effect of boron compounds in polymeric materials. Composites Part B: Engineering, 222, 109088, ISSN 1359-8368. https://doi.org/10.1016/j.compositesb.2021.109088.
  • Araby, S., Philips, B., Meng, Q., Ma, J., Laoui, T. & Wang, C. H. (2021). Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Composites Part B: Engineering, 212, 108675, ISSN 1359-8368. https://doi.org/10.1016/j.compositesb.2021.108675.
  • Liu, P., Chen, W., Liu, Y., Bai, S. & Wang, Q. (2014). Thermal melt processing to prepare halogen-free flame retardant poly(vinyl alcohol). Polymer Degradation and Stability, 109, 261-269, ISSN 0141-3910. https://doi.org/10.1016/j.polymdegradstab.2014.07.021.
  • Pi, H., Guo, S. & Ning Y. (2003). Mechanochemical improvement of the flame-retardant and mechanical properties of zinc borate and zinc borate–aluminum trihydrate-filled poly(vinyl chloride). Journal of Applied Polymer Science, 89, 753–762. https://doi.org/10.1002/app.12202
  • Zhang, Z., Wu, W., Zhang, M., Qu, J., Shi, L., Qu, H., Xu, J. (2017). Hydrothermal synthesis of 4ZnO·B2O3·H2O/RGO hybrid material and its flame retardant behavior in flexible PVC and magnesium hydroxide composites. Applied Surface Science, 425, 896‒904, ISSN 0169-4332. https://doi.org/10.1016/j.apsusc.2017.07.101.
  • Chan-Hom, T., Yamsaengsung, W., Prapagdee, B., Markpin, T. & Sombatsompop N. (2016). Flame retardancy, antifungal efficacies, and physical–mechanical properties for wood/polymer composites containing zinc borate. Fire and Materials, 41, 675–687. https://doi.org/10.1002/fam.2408
  • Erdoğdu, C. A., Atakul, S., Balköse D. & Ülkü S. (2008). Development of Synergistic Heat Stabilizers for PVC from Zinc Borate-Zinc Phosphate. Chemical Engineering Communications, 196:1-2, 148-160. https://doi.org/10.1080/00986440802293148
  • Mergen, A., İpek, Y., Bölek, H. & Öksüz, M. (2012). Production of nano zinc borate (4ZnO·B2O3·H2O) and its effect on PVC. Journal of the European Ceramic Society, 32, 2001–2005. https://doi.org/10.1016/j.jeurceramsoc.2011.10.034
  • Thomas, N.L. (2003). Zinc compounds as flame retardants and smoke suppressants for rigid PVC. Plastics, Rubber and Composites, 32(8‒9), 413‒419. https://doi.org/10.1179/146580103225004063
  • Ning, Y. & Guo, S. (2000). Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC. Journal of Applied Polymer Science, 77, 3119 –3127. https://doi.org/10.1016/j.jaap.2012.12.028
  • Borukaev, T.A., Shaov, A. K., Kharaev, A.M. & Borodulin, A.S. (2020). Investigation of the effect of zinc borate on the physic mechanical properties of PVC plastic. Materials Science and Engineering, 934, 012001. https://doi.org/10.1088/1757-899X/934/1/012001
  • Ismail, A.F., Khulbe, K.C. & Matsuura, T. (2019). Chapter 3 - RO Membrane Characterization, Editor(s): Ahmad Fauzi Ismail, Kailash Chandra Khulbe, Takeshi Matsuura, Reverse Osmosis, Elsevier, 57‒90, ISBN 9780128114681, https://doi.org/10.1016/B978-0-12-811468-1.00003-7
  • Çetin, A., Erzengin, S.G. & Alp, F.B. (2019). Various Combinations of Flame Retardants for Poly(vinyl chloride). Open Chem., 17, 980–987. https://doi.org/10.1515/chem-2019-0105
  • Kilinc, M., Cakal, G.O., Bayram, G., Eroglu, I. & Özkar, S. (2015). Flame retardancy and mechanical properties of pet-based composites containing phosphorus and boron-based additives. J. Appl. Polym. Sci., 132(22), 42016.
  • Yerleşen, U. & Taşdemir, M. (2015). Effect of Zinc Oxide and Zinc Borate on Mechanical Properties of High Density Polyethylene. Romanian Journal of Materials, 45 (3), 240‒243.
  • George, S., Neelakanthan, N.R., Varughese, K.T. & Thomas, S. (1997). J Polym Sci Polym Phys Ed, 35, 2309. https://doi.org/10.1002/(SICI)1099-0488(199710)35:14<2309::AID-POLB11>3.0.CO;2-G
  • Varughese, K.T., Nando, G.B., De, P.P. & De, S.K. (1988). J Mater Sci, 23, 3894 https://doi.org/10.1007/BF01106811
  • Senake Perera, M.C., Ishiaku, U.S. & Mohd. Ishak, Z.A. (2001). Characterisation of PVC/NBR and PVC/ENR50 binary blends and PVC/ENR50/NBR ternary blends by DMA and solid state NMR. European Polymer Journal, 37(1), 167‒178, ISSN 0014‒3057. https://doi.org/10.1016/S0014-3057(00)00085-9
  • Shi, X., Yuan, L., Sun, X., Chang, C. & Sun, J. (2008). Controllable Synthesis of 4ZnO·B2O3·H2O Nano-/Microstructures with Different Morphologies: Influence of Hydrothermal Reaction Parameters and Formation Mechanism. J. Phys. Chem. C, 112(10), 3558–3567.
  • İpek, Y. (2020). Effect of surfactant types on particle size and morphology of flame-retardant zinc borate powder. Turk J Chem, 44, 214–223. https://doi.org/10.3906/kim-1906-49
  • Li, S., Long, B., Wang, Z., Tian, Y., Zheng, Y. & Zhang, Q. (2010). Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene. Journal of Solid State Chemistry, 183(4), 957‒962, ISSN 0022‒4596. https://doi.org/10.1016/j.jssc.2010.02.017

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Yeliz İPEK (Sorumlu Yazar)
MUNZUR ÜNİVERSİTESİ
0000-0002-9390-9875
Türkiye

Destekleyen Kurum BOREN
Proje Numarası 2008-C0154
Teşekkür Great thanks to National Boron Research Institute (BOREN, Project No: 2008-C0154) for financial support.
Yayımlanma Tarihi 31 Aralık 2021
Yayınlandığı Sayı Yıl 2021, Cilt 6, Sayı 4

Kaynak Göster

Bibtex @araştırma makalesi { boron961843, journal = {Journal of Boron}, issn = {2149-9020}, eissn = {2667-8438}, address = {}, publisher = {TENMAK Bor Araştırma Enstitüsü}, year = {2021}, volume = {6}, number = {4}, pages = {387 - 394}, doi = {10.30728/boron.961843}, title = {Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride}, key = {cite}, author = {İpek, Yeliz} }
APA İpek, Y. (2021). Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride . Journal of Boron , 6 (4) , 387-394 . DOI: 10.30728/boron.961843
MLA İpek, Y. "Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride" . Journal of Boron 6 (2021 ): 387-394 <https://dergipark.org.tr/tr/pub/boron/issue/67341/961843>
Chicago İpek, Y. "Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride". Journal of Boron 6 (2021 ): 387-394
RIS TY - JOUR T1 - Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride AU - Yeliz İpek Y1 - 2021 PY - 2021 N1 - doi: 10.30728/boron.961843 DO - 10.30728/boron.961843 T2 - Journal of Boron JF - Journal JO - JOR SP - 387 EP - 394 VL - 6 IS - 4 SN - 2149-9020-2667-8438 M3 - doi: 10.30728/boron.961843 UR - https://doi.org/10.30728/boron.961843 Y2 - 2021 ER -
EndNote %0 Bor Dergisi Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride %A Yeliz İpek %T Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride %D 2021 %J Journal of Boron %P 2149-9020-2667-8438 %V 6 %N 4 %R doi: 10.30728/boron.961843 %U 10.30728/boron.961843
ISNAD İpek, Yeliz . "Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride". Journal of Boron 6 / 4 (Aralık 2021): 387-394 . https://doi.org/10.30728/boron.961843
AMA İpek Y. Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride. Journal of Boron. 2021; 6(4): 387-394.
Vancouver İpek Y. Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride. Journal of Boron. 2021; 6(4): 387-394.
IEEE Y. İpek , "Influence of particle size, additive ratio and chemical structure of zinc borate on thermal and mechanical properties of polyvinyl chloride", Journal of Boron, c. 6, sayı. 4, ss. 387-394, Ara. 2021, doi:10.30728/boron.961843

© 2016 Her Hakkı Saklıdır.
TENMAK Bor Araştırma Enstitüsü