Araştırma Makalesi
BibTex RIS Kaynak Göster

Bor oksit’in (B2O3) PET’in termal ve mekanik bozunma davranışı üzerine etkisi

Yıl 2022, Cilt: 7 Sayı: 4, 535 - 542, 31.12.2022
https://doi.org/10.30728/boron.1148497

Öz

Bu çalışmada, ekstrüzyon yöntemiyle bor oksit (B2O3) farklı miktarlarda (kütlece %0,05–0,8) polietilen tereftalat’a (PET) katkılanarak önce PET/B2O3 granülleri sonrasında ise sırasıyla enjeksiyon ve gerdirme-şişirme-kalıplama yöntemleriyle şişe üretimi gerçekleştirildi. B2O3 içeriğinin artmasıyla PET kompozitin viskozitesi azalmış ve en düşük viskozite değeri %0,8 B2O3 konsantrasyonu için 0,385 dL/g olarak ölçülmüştür. PET kompozitlerin kristalleşme sıcaklığı (Tc), B2O3 miktarının artışına bağlı olarak yaklaşık 8,2ºC yükselmiştir. PET’in bozunması sonucu açığa çıkan izoftalik asit (IPA) üzerinde B2O3 katkısının herhangi bir etkisi görülmezken asetaldehit (AA) miktarında azalma, karboksilik asit (COOH) ve dietilen glikol (DEG) miktarında ise artış meydana gelmiştir.

Destekleyen Kurum

Ulusal Bor Araştırma Enstitüsü

Proje Numarası

2019-31-07-25-004

Teşekkür

Bu çalışma Ulusal Bor Araştırma Enstitüsü (Proje No: 2019-31-07-25-004) tarafından finansal olarak desteklenmiştir.

Kaynakça

  • Gerassimidou, S., Lanska, P., Hahladakis, J. N., Lovat, E., Vanzetto, S., Geueke, B., … Martin, O. V. (2022). Unpacking the complexity of the PET drink bottles value chain: A chemicals perspective. Journal of Hazardous Materials, 128410.
  • Kawai, F. (2021). Emerging strategies in polyethylene terephthalate hydrolase research for biorecycling. ChemSusChem, 14(19), 4115–4122.
  • Venkatachalam, S., Nayak, S. G., Labde, J. V, Gharal, P. R., Rao, K., & Kelkar, A. K. (2012). Degradation and recyclability of poly (ethylene terephthalate). In Polyester (pp. 75–98). InTech Rijeka, Croatia.
  • Das, P., & Tiwari, P. (2019). Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochimica Acta, 679, 178340.
  • Mutsuga, M., Tojima, T., Kawamura, Y., & Tanamoto, K. (2005). Survey of formaldehyde, acetaldehyde and oligomers in polyethylene terephthalate food-packaging materials. Food Additives and contaminants, 22(8), 783–789.
  • Frache, A., & Camino, G. (2012). Degradazione, stabilizzazione e ritardo alla fiamma di polimeri (Vol. 8). Edizioni Nuova Cultura.
  • Golike, R. C., & Lasoski Jr, S. W. (1960). Kinetics of hydrolysis of polyethylene terephthalate films. The Journal of Physical Chemistry, 64(7), 895–898.
  • McIntyre, J. E. (2005). Synthetic fibres: nylon, polyester, acrylic, polyolefin. Taylor & Francis US.
  • Demirel, B., Kılıç, E., Yaraş, A., Akkurt, F., Daver, F., & Gezer, D. U. (2022). Effects of magnesium borate on the mechanical performance, thermal and chemical degradation of polyethylene terephthalate packaging material. Journal of Plastic Film & Sheeting, 87560879221097630.
  • Sahoo, A., Gayathri, H. N., Sai, T. P., Upasani, P. S., Raje, V., Berkmans, J., & Ghosh, A. (2020). Enhancement of thermal and mechanical properties of few layer boron nitride reinforced PET composite. Nanotechnology, 31(31), 315706.
  • Hwang, S.-H., Kim, Y. K., Seo, H.-J., Hong, S. H., Lim, S. K., Lee, S. H., & Kim, D.-K. (2019). The Morphological Effects of ZnO Upon the Antimicrobial and Deodorant Activities of Polyethylene Terephthalate/ZnO Composite Filaments. Journal of nanoscience and nanotechnology, 19(12), 7721–7728.
  • Calvo, M. E., Castro Smirnov, J. R., & Míguez, H. (2012). Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics, 50(14), 945–956.
  • Demirel, B., İnaner, N. B., Gezer, D. U., Daver, F., Yaras, A., & Akkurt, F. (2021). Chemical, thermal, and mechanical properties and ultraviolet transmittance of novel nano‐hydroxyapatite/polyethylene terephthalate milk bottles. Polymer Engineering & Science.
  • Mergen, A., Tektas, E., Karakoc, G., & Gündüz, M. (2003). Effect of process variables on the fabrication of zinc borate by a wet chemical method. In CFI. Ceramic forum international (Vol. 80, pp. E40–E45). Göller.
  • Li, J., Gao, S., Xia, S., Li, B., & Hu, R. (1997). Thermochemistry of hydrated magnesium borates. The Journal of Chemical Thermodynamics, 29(4), 491–497.
  • Furetta, C., Kitis, G., Weng, P. S., & Chu, T. C. (1999). Thermoluminescence characteristics of MgB4O7: Dy, Na. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 420(3), 441–445.
  • Vedula, J., & Tonelli, A. E. (2007). Reorganization of poly (ethylene terephthalate) structures and conformations to alter properties. Journal of Polymer Science Part B: Polymer Physics, 45(7), 735–746.
  • Zhang, G. Q., Sun, F., Gao, L. P., Wang, L. N., Shao, M., & Liu, J. Q. (2007). Thermodynamics properties and isothermal crystallization kinetics of carbon black/poly (ethylene terephthalate) composites. Journal of composite materials, 41(12), 1477–1485.
  • Ganeshan, G., Shadangi, K. P., & Mohanty, K. (2018). Degradation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephthalate (PET) using Coats–Redfern method. Journal of Thermal Analysis and Calorimetry, 131(2), 1803–1816.
  • Holland, B. J., & Hay, J. N. (2002). The thermal degradation of PET and analogous polyesters measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer, 43(6), 1835–1847.
  • Rojas, S. S., Yukimitu, K., De Camargo, A. S. S., Nunes, L. A. O., & Hernandes, A. C. (2006). Undoped and calcium doped borate glass system for thermoluminescent dosimeter. Journal of non-crystalline solids, 352(32–35), 3608–3612.
  • Özdemir, Z., Özbayoğlu, G., & Yilmaz, A. (2007). Investigation of thermoluminescence properties of metal oxide doped lithium triborate. Journal of materials science, 42(20), 8501–8508.
  • Pekpak, E., Yılmaz, A., & Özbayoğlu, G. (2011). The effect of synthesis and doping procedures on thermoluminescent response of lithium tetraborate. Journal of Alloys and Compounds, 509(5), 2466–2472.
  • Harris, B. (1999). Engineering composite materials.
  • Arı, A. G. (2009). Polimer Nanokompozitlerin Özelliklerine Değişik Nanopartiküllerin Etkisinin İncelenmesi. Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 4, 7.
  • Inaner, N. B., Demirel, B., Yaras, A., Akkurt, F., & Daver, F. (2022). Improvement of environmental stress cracking performance, load‐carrying capacity, and UV light barrier property of polyethylene terephthalate packaging material. Polymers for Advanced Technologies.
  • Barros, A. B. de S., Farias, R. de F., Siqueira, D. D., Luna, C. B. B., Araújo, E. M., Rabello, M. S., & Wellen, R. M. R. (2020). The Effect of ZnO on the Failure of PET by Environmental Stress Cracking. Materials, 13(12), 2844.
  • Wright, D. C. (1996). Environmental stress cracking of plastics, Shawbury. Shrewsbury (Shrospshire, UK): Rapra Technology. Moskala, E. J. (1998). A fracture mechanics approach to environmental stress cracking in poly (ethyleneterephthalate). Polymer, 39(3), 675–680.
  • Leong, Y. W., Ishak, Z. A. M., & Ariffin, A. (2004). Mechanical and thermal properties of talc and calcium carbonate filled polypropylene hybrid composites. Journal of Applied Polymer Science, 91(5), 3327–3336.
  • Thio, Y. S., Argon, A. S., Cohen, R. E., & Weinberg, M. (2002). Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 43(13), 3661–3674.
  • Wan, T., Chen, L., Chua, Y. C., & Lu, X. (2004). Crystalline morphology and isothermal crystallization kinetics of poly (ethylene terephthalate)/clay nanocomposites. Journal of Applied Polymer Science, 94(4), 1381–1388.
  • Farhoodi, M., Mousavi, S. M. A., Sotudeh-Gharebagh, R., Emam-Djomeh, Z., & Oromiehie, A. (2014). Effect of spherical and platelet-like nanoparticles on physical and mechanical properties of polyethylene terephthalate. Journal of Thermoplastic Composite Materials, 27(8), 1127–1138.
  • Guan, G., Li, C., Yuan, X., Xiao, Y., Liu, X., & Zhang, D. (2008). New insight into the crystallization behavior of poly (ethylene terephthalate)/clay nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 46(21), 2380–2394.
  • Farhoodi, M., Mohammadifar, M. A., Mousavi, M., Sotudeh‐Gharebagh, R., & Emam‐Djomeh, Z. (2017). Migration kinetics of ethylene glycol monomer from pet bottles into acidic food simulant: effects of nanoparticle presence and matrix morphology. Journal of Food Process Engineering, 40(2), e12383.
  • Bandyopadhyay, J., Ray, S. S., & Bousmina, M. (2007). Thermal and thermo-mechanical properties of poly (ethylene terephthalate) nanocomposites. Journal of Industrial and Engineering Chemistry, 13(4), 614–623.

Effect of boron oxide (B2O3) on thermal and mechanical decomposition behavior of PET

Yıl 2022, Cilt: 7 Sayı: 4, 535 - 542, 31.12.2022
https://doi.org/10.30728/boron.1148497

Öz

In this study, different amounts of boron oxide (B2O3) (0.05-0.8% by mass) were incorporated to polyethylene terephthalate (PET) by extrusion method, and then PET/B2O3 granules and bottles were produced using the injection and stretch-blow-molding methods, respectively. With the increase of B2O3 content, the viscosity of PET composite decreased and the lowest viscosity value was measured as 0.385 dL/g for %0.8 B2O3 concentration. The crystallization temperature (Tc) of PET composites increased by about 8.2ºC due to the increase in the amount of B2O3. While no effect of B2O3 additive was observed on isophthalic acid (IPA) released as a result of the degradation of PET, a decrease in the amount of acetaldehyde (AA) and an increase in the amount of carboxylic acid (COOH) and diethylene glycol (DEG) occurred.

Proje Numarası

2019-31-07-25-004

Kaynakça

  • Gerassimidou, S., Lanska, P., Hahladakis, J. N., Lovat, E., Vanzetto, S., Geueke, B., … Martin, O. V. (2022). Unpacking the complexity of the PET drink bottles value chain: A chemicals perspective. Journal of Hazardous Materials, 128410.
  • Kawai, F. (2021). Emerging strategies in polyethylene terephthalate hydrolase research for biorecycling. ChemSusChem, 14(19), 4115–4122.
  • Venkatachalam, S., Nayak, S. G., Labde, J. V, Gharal, P. R., Rao, K., & Kelkar, A. K. (2012). Degradation and recyclability of poly (ethylene terephthalate). In Polyester (pp. 75–98). InTech Rijeka, Croatia.
  • Das, P., & Tiwari, P. (2019). Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochimica Acta, 679, 178340.
  • Mutsuga, M., Tojima, T., Kawamura, Y., & Tanamoto, K. (2005). Survey of formaldehyde, acetaldehyde and oligomers in polyethylene terephthalate food-packaging materials. Food Additives and contaminants, 22(8), 783–789.
  • Frache, A., & Camino, G. (2012). Degradazione, stabilizzazione e ritardo alla fiamma di polimeri (Vol. 8). Edizioni Nuova Cultura.
  • Golike, R. C., & Lasoski Jr, S. W. (1960). Kinetics of hydrolysis of polyethylene terephthalate films. The Journal of Physical Chemistry, 64(7), 895–898.
  • McIntyre, J. E. (2005). Synthetic fibres: nylon, polyester, acrylic, polyolefin. Taylor & Francis US.
  • Demirel, B., Kılıç, E., Yaraş, A., Akkurt, F., Daver, F., & Gezer, D. U. (2022). Effects of magnesium borate on the mechanical performance, thermal and chemical degradation of polyethylene terephthalate packaging material. Journal of Plastic Film & Sheeting, 87560879221097630.
  • Sahoo, A., Gayathri, H. N., Sai, T. P., Upasani, P. S., Raje, V., Berkmans, J., & Ghosh, A. (2020). Enhancement of thermal and mechanical properties of few layer boron nitride reinforced PET composite. Nanotechnology, 31(31), 315706.
  • Hwang, S.-H., Kim, Y. K., Seo, H.-J., Hong, S. H., Lim, S. K., Lee, S. H., & Kim, D.-K. (2019). The Morphological Effects of ZnO Upon the Antimicrobial and Deodorant Activities of Polyethylene Terephthalate/ZnO Composite Filaments. Journal of nanoscience and nanotechnology, 19(12), 7721–7728.
  • Calvo, M. E., Castro Smirnov, J. R., & Míguez, H. (2012). Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics, 50(14), 945–956.
  • Demirel, B., İnaner, N. B., Gezer, D. U., Daver, F., Yaras, A., & Akkurt, F. (2021). Chemical, thermal, and mechanical properties and ultraviolet transmittance of novel nano‐hydroxyapatite/polyethylene terephthalate milk bottles. Polymer Engineering & Science.
  • Mergen, A., Tektas, E., Karakoc, G., & Gündüz, M. (2003). Effect of process variables on the fabrication of zinc borate by a wet chemical method. In CFI. Ceramic forum international (Vol. 80, pp. E40–E45). Göller.
  • Li, J., Gao, S., Xia, S., Li, B., & Hu, R. (1997). Thermochemistry of hydrated magnesium borates. The Journal of Chemical Thermodynamics, 29(4), 491–497.
  • Furetta, C., Kitis, G., Weng, P. S., & Chu, T. C. (1999). Thermoluminescence characteristics of MgB4O7: Dy, Na. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 420(3), 441–445.
  • Vedula, J., & Tonelli, A. E. (2007). Reorganization of poly (ethylene terephthalate) structures and conformations to alter properties. Journal of Polymer Science Part B: Polymer Physics, 45(7), 735–746.
  • Zhang, G. Q., Sun, F., Gao, L. P., Wang, L. N., Shao, M., & Liu, J. Q. (2007). Thermodynamics properties and isothermal crystallization kinetics of carbon black/poly (ethylene terephthalate) composites. Journal of composite materials, 41(12), 1477–1485.
  • Ganeshan, G., Shadangi, K. P., & Mohanty, K. (2018). Degradation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephthalate (PET) using Coats–Redfern method. Journal of Thermal Analysis and Calorimetry, 131(2), 1803–1816.
  • Holland, B. J., & Hay, J. N. (2002). The thermal degradation of PET and analogous polyesters measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer, 43(6), 1835–1847.
  • Rojas, S. S., Yukimitu, K., De Camargo, A. S. S., Nunes, L. A. O., & Hernandes, A. C. (2006). Undoped and calcium doped borate glass system for thermoluminescent dosimeter. Journal of non-crystalline solids, 352(32–35), 3608–3612.
  • Özdemir, Z., Özbayoğlu, G., & Yilmaz, A. (2007). Investigation of thermoluminescence properties of metal oxide doped lithium triborate. Journal of materials science, 42(20), 8501–8508.
  • Pekpak, E., Yılmaz, A., & Özbayoğlu, G. (2011). The effect of synthesis and doping procedures on thermoluminescent response of lithium tetraborate. Journal of Alloys and Compounds, 509(5), 2466–2472.
  • Harris, B. (1999). Engineering composite materials.
  • Arı, A. G. (2009). Polimer Nanokompozitlerin Özelliklerine Değişik Nanopartiküllerin Etkisinin İncelenmesi. Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 4, 7.
  • Inaner, N. B., Demirel, B., Yaras, A., Akkurt, F., & Daver, F. (2022). Improvement of environmental stress cracking performance, load‐carrying capacity, and UV light barrier property of polyethylene terephthalate packaging material. Polymers for Advanced Technologies.
  • Barros, A. B. de S., Farias, R. de F., Siqueira, D. D., Luna, C. B. B., Araújo, E. M., Rabello, M. S., & Wellen, R. M. R. (2020). The Effect of ZnO on the Failure of PET by Environmental Stress Cracking. Materials, 13(12), 2844.
  • Wright, D. C. (1996). Environmental stress cracking of plastics, Shawbury. Shrewsbury (Shrospshire, UK): Rapra Technology. Moskala, E. J. (1998). A fracture mechanics approach to environmental stress cracking in poly (ethyleneterephthalate). Polymer, 39(3), 675–680.
  • Leong, Y. W., Ishak, Z. A. M., & Ariffin, A. (2004). Mechanical and thermal properties of talc and calcium carbonate filled polypropylene hybrid composites. Journal of Applied Polymer Science, 91(5), 3327–3336.
  • Thio, Y. S., Argon, A. S., Cohen, R. E., & Weinberg, M. (2002). Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 43(13), 3661–3674.
  • Wan, T., Chen, L., Chua, Y. C., & Lu, X. (2004). Crystalline morphology and isothermal crystallization kinetics of poly (ethylene terephthalate)/clay nanocomposites. Journal of Applied Polymer Science, 94(4), 1381–1388.
  • Farhoodi, M., Mousavi, S. M. A., Sotudeh-Gharebagh, R., Emam-Djomeh, Z., & Oromiehie, A. (2014). Effect of spherical and platelet-like nanoparticles on physical and mechanical properties of polyethylene terephthalate. Journal of Thermoplastic Composite Materials, 27(8), 1127–1138.
  • Guan, G., Li, C., Yuan, X., Xiao, Y., Liu, X., & Zhang, D. (2008). New insight into the crystallization behavior of poly (ethylene terephthalate)/clay nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 46(21), 2380–2394.
  • Farhoodi, M., Mohammadifar, M. A., Mousavi, M., Sotudeh‐Gharebagh, R., & Emam‐Djomeh, Z. (2017). Migration kinetics of ethylene glycol monomer from pet bottles into acidic food simulant: effects of nanoparticle presence and matrix morphology. Journal of Food Process Engineering, 40(2), e12383.
  • Bandyopadhyay, J., Ray, S. S., & Bousmina, M. (2007). Thermal and thermo-mechanical properties of poly (ethylene terephthalate) nanocomposites. Journal of Industrial and Engineering Chemistry, 13(4), 614–623.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Bilal Demirel 0000-0002-5390-0630

Ali Yaraş 0000-0003-1725-7788

Fatih Akkurt 0000-0002-3509-2246

Sedat Sürdem 0000-0001-8220-7934

Proje Numarası 2019-31-07-25-004
Yayımlanma Tarihi 31 Aralık 2022
Kabul Tarihi 12 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 4

Kaynak Göster

APA Demirel, B., Yaraş, A., Akkurt, F., Sürdem, S. (2022). Bor oksit’in (B2O3) PET’in termal ve mekanik bozunma davranışı üzerine etkisi. Journal of Boron, 7(4), 535-542. https://doi.org/10.30728/boron.1148497

© 2016 Her Hakkı Saklıdır.
TENMAK Bor Araştırma Enstitüsü