Araştırma Makalesi
BibTex RIS Kaynak Göster

Boraks dekahidrat çözeltilerinin faz değiştiren malzeme olarak ön soğutma işlemi yapılan soğuk depolama sisteminde kullanımı

Yıl 2024, Cilt: 9 Sayı: 2, 62 - 68, 28.06.2024
https://doi.org/10.30728/boron.1405029

Öz

Ön soğutma işlemi taze sebze ve meyvelerin hasattan kısa süre sonra meydana gelen bozulmalarının önüne geçmek amacıyla yürütülen soğuk depolamanın önemli basamaklarından biridir. Bu çalışmada, laboratuvar ölçekli bir soğutma sistemi ön soğutma işlem koşullarında faz değiştiren malzemesiz (FDM’siz) ve FDM’lerle test edilmiştir. FDM olarak sisteme su ve farklı konsantrasyonlarda hazırlanan boraks dekahidrat (Na2B4O7.10H2O) çözeltileri entegre edilmiştir. Kompresör çalışma süresinin (%) tüm FDM’lerle azaldığı tespit edilmiştir. FDM’siz durumda %21,05 olarak belirlenen bu değerin ağ. %1,0 Na2B4O7.10H2O çözeltisi ile %12,12 değerine kadar düştüğü belirlenmiştir. Dolayısıyla, toplam enerji tüketiminde maksimum azalma, ağ. %1,0 Na2B4O7.10H2O çözeltisi ile %41,7 oranında hesaplanmıştır. Elektrik kesintisi esnasında ise, kabin iç hava sıcaklığının ortam sıcaklığına ulaşma süresi FDM’siz duruma göre ağ. %1,0 Na2B4O7.10H2O çözeltisi ile yaklaşık 4,3 kat uzadığı belirlenmiştir. Sonuç olarak, ön soğutma işleminde kullanılan soğutma sistemlerinde kullanmak üzere ağ. %1,0 Na2B4O7.10H2O çözeltisi alternatif FDM olarak önerilmektedir.

Teşekkür

Eti Maden Bandırma Bor ve Asit Fabrikaları İşletme Müdürlüğü’ne boraks dekahidrat rafine bor numune temini için teşekkür ederiz.

Kaynakça

  • [1] Shabani, A., Saen, R. F., & Torabipour, S. M. R. (2012). A new benchmarking approach in Cold Chain. Applied Mathematical Modelling, 36(1), 212-224. https://doi.org/10.1016/j.apm.2011.05.051.
  • [2] Altun, Ö., Aslantaş K., & Sökmen, E. (2020). Design of a Cold Storage Depot Using R744 as Refrigerant with Two Evaporators in Eskisehir. Soğutma Dünyası, 23(88), 50-57. https://drive.google.com/file/d/14L8goNN2k9vGXdr5v0G41PareShHwV84/view.
  • [3] Thakur, B. (2016). Advancement in harvesting, pre-cooling and grading of fruits. Innovare Journal of Agricultural Science, 4(2), 13-23. ISSN 2321-6832. https://journals.innovareacademics.in/index.php/ijags/article/view/6802/4961.
  • [4] Brosnan, T., & Sun, D. W. (2001). Precooling techniques and applications for horticultural products—a review. International Journal of Refrigeration, 24(2), 154-170. https://doi.org/10.1016/S0140-7007(00)00017-7.
  • [5] Azzouz, K., Leducq, D., & Gobin, D. (2009). Enhancing the performance of household refrigerators with latent heat storage: An experimental investigation. International Journal of Refrigeration, 32(7), 1634-1644. https://doi.org/10.1016/j.ijrefrig.2009.03.012.
  • [6] Yusufoglu, Y., Apaydin, T., Yilmaz, S., & Paksoy, H. O. (2015). Improving performance of household refrigerators by incorporating phase change materials. International Journal of Refrigeration, 57, 173-185. https://doi.org/10.1016/j.ijrefrig.2015.04.020.
  • [7] Kiran-Yildirim, B. (2022). Performance evaluation of a laboratory-scale cooling system as a household refrigerator with phase change materials. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 5852-5867. https://doi.org/10.1080/15567036.2022.2089300.
  • [8] Khan, M. I. H. & Afroz H. M. M. (2013). Effect of Phase Change Material on Performance of a Household Refrigerator. Asian Journal of Applied Sciences, 6, 56-67. https://doi.org/10.3923/ajaps.2013.56.67
  • [9] Marques, A. C., Davies, G. F., Evans, J. A., Maidment, G. G., & Wood, I. D. (2013). Theoretical modelling and experimental investigation of a thermal energy storage refrigerator. Energy, 55, 457-465. https://doi.org/10.1016/j.energy.2013.03.091.
  • [10] Khan, M. I. H. (2016). Conventional refrigeration systems using phase change material: a review. International Journal of Air-Conditioning and Refrigeration, 24(03), 1630007. https://doi.org/10.1142/S201013251630007X.
  • [11] Oró, E., De Gracia, A., Castell, A., Farid, M. M., & Cabeza, L. F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99, 513-533. https://doi.org/10.1016/j.apenergy.2012.03.058.
  • [12] Joybari, M. M., Haghighat, F., Moffat, J., & Sra, P. (2015). Heat and cold storage using phase change materials in domestic refrigeration systems: The state-of-the-art review. Energy Buildings, 106, 111-124. https://doi.org/10.1016/j.enbuild.2015.06.016.
  • [13] Le, T. L., Duong, X. Q., Nguyen, D. T., Nguyen, P. Q. P., Rajamohan, S., Vo, A. V., & Le, H. S. (2023). Application of phase change materials in improving the performance of refrigeration systems. Sustainable Energy Technologies and Assessments, 56, 103097. https://doi.org/10.1016/j.seta.2023.103097.
  • [14] Rocha, T. T. M., Teggar, M., Trevizoli, P. V., & de Oliveira, R. N. (2023). Potential of latent thermal energy storage for performance improvement in small-scale refrigeration units: A review. Renewable and Sustainable Energy Reviews, 187, 113746. https://doi.org/10.1016/j.rser.2023.113746.
  • [15] Sekhar, S. J., Raj, M. A. F., Raveendran, P. S., & Murugan, P. C. (2022). Cladding phase change materials in freezing and chilling zones of household refrigerator to improve thermal performance and environmental benefits. Journal of Energy Storage, 55, 105476. https://doi.org/10.1016/j.est.2022.105476.
  • [16] Yilmaz, D., Mancuhan, E., & Yılmaz, B. (2020). Experimental investigation of PCM location in a commercial display cabinet cooled by a transcritical CO2 system. International Journal of Refrigeration, 120, 396-405. https://doi.org/10.1016/j.ijrefrig.2020.09.006.
  • [17] Kalidasan, B., Pandey, A. K., Rahman, S., Khir, H., & Zaed, M. A. (2024). Experimental investigation on nucleating agent for low temperature binary eutectic salt hydrate phase change material. E3S Web of Conferences, 488, 01004. https://doi.org/10.1051/e3sconf/202448801004.
  • [18] Hou, P., Mao, J., Chen, F., Li, Y., & Dong, X. (2018). Preparation and thermal performance enhancement of low temperature eutectic composite phase change materials based on Na2SO4· 10H2O. Materials, 11(11), 2230. https://doi.org/10.3390/ma11112230.
  • [19] Zhao, L., Xing, Y., Liu, X., & Luo, Y. (2018). Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage. Applied Thermal Engineering, 143, 172-181. https://doi.org/10.1016/j.applthermaleng.2018.07.094.
  • [20] Liang, Q., Zhang, H., Li, Y., Zhang, X., & Pan, D. (2024). Multifunctional response of biomass carbon/sodium sulfate decahydrate composite phase change materials. Journal of Energy Storage, 83, 110621. https://doi.org/10.1016/j.est.2024.110621.
  • [21] Kiran-Yildirim, B., T. Noya, E. Mancuhan, & S. Titiz-Sargut. (2021). Investigation of Energy Consumption for a PCM Integrated Laboratory Scale Cooling System: An Experimental Study. 23rd Congress on Thermal Science and Technology with International Participation (ULIBTK 2021), Turkiye. 1, 1002-1008. https://drive.google.com/drive/folders/1dmF8npoQu3qAe3NCtv0xLElqJyi-jIRD.
  • [22] Lide, D. R. (2009). CRC handbook of chemistry and physics (90th Edition). CRC press. ISBN 9781420090840.
  • [23] Smith, R. A., & McBroom, R. B. (2000). Boron oxides, boric acid, and borates. Kirk‐Othmer Encyclopedia of Chemical Technology. https://doi.org/10.1002/0471238961.0215181519130920.a01.
  • [24] Kıran Yıldırım, B., Düzgün, E., Kül, B., Gök, S., Mançuhan, E., Sargut, S., & Ersoy, A. (2023). Ön Soğutma İşlemi Yapılan Bir Soğuk Depolama Sisteminde Enerji Tüketiminin Faz Değişim Malzemesi Kullanılarak İncelenmesi [Examination of Energy Consumption in a Cold Storage System used for the precooling process with Phase Change Material], 15. Ulusal Kimya Mühendisliği Kongresi (UKMK-15) [15. National Chemical Engineering Congress (UKMK-15)], Türkiye, 782-785. https://drive.google.com/file/d/1NtbxaLs0CqKo9Z4nJNKk-mbrP_HVkx43/view.
  • [25] Lane, G. A. (1983). Solar Heat Storage (Volume I: Latent Heat Material). CRC Press. https://doi.org/10.1201/9781351076753.
  • [26] Garg, H. P., Mullick, S. C., & Bhargava, A. K. (1985). Solar Thermal Energy Storage. Springer Dordrecht. https://doi.org/10.1007/978-94-009-5301-7.
  • [27] Tek, Y. (2009). Synthesis, characterization and physicochemical properties of urea and thiourea-fatty acid condensation compounds (Thesis No. 244875). [Master's thesis, Gaziosmanpaşa University]. Council of Higher Education.

Utilization of borax dekahydrate solutions as a phase change material in a cold storage system for precooling process

Yıl 2024, Cilt: 9 Sayı: 2, 62 - 68, 28.06.2024
https://doi.org/10.30728/boron.1405029

Öz

The precooling process is one of the important stages of cold storage, conducted to prevent the spoilage of fresh vegetables and fruits shortly after harvesting. In this study, a cooling system operating under the conditions of the precooling process was tested with and without phase change materials (PCMs). Water and borax decahydrate (Na2B4O7.10H2O) solutions at different concentrations were integrated into the system as PCMs. It was revealed that the compressor running time (%) decreased with all PCMs. This value, determined to be 21.05% without PCM, decreased to a value of 12.12% with 1.0 wt.% Na2B4O7.10H2O solution. Therefore, the maximum reduction in total energy consumption was calculated to be 41.7% with 1.0 wt.% Na2B4O7.10H2O solution. Additionally, it was observed that the time to reach the internal cabin air temperature to the ambient temperature was approximately 4.3 times longer with 1.0 wt.% Na2B4O7.10H2O solution than that of the case without PCM during a power failure period. Consequently, 1.0 wt.% Na2B4O7.10H2O solution is recommended as an alternative PCM to be used in cooling systems employed in the precooling process.

Kaynakça

  • [1] Shabani, A., Saen, R. F., & Torabipour, S. M. R. (2012). A new benchmarking approach in Cold Chain. Applied Mathematical Modelling, 36(1), 212-224. https://doi.org/10.1016/j.apm.2011.05.051.
  • [2] Altun, Ö., Aslantaş K., & Sökmen, E. (2020). Design of a Cold Storage Depot Using R744 as Refrigerant with Two Evaporators in Eskisehir. Soğutma Dünyası, 23(88), 50-57. https://drive.google.com/file/d/14L8goNN2k9vGXdr5v0G41PareShHwV84/view.
  • [3] Thakur, B. (2016). Advancement in harvesting, pre-cooling and grading of fruits. Innovare Journal of Agricultural Science, 4(2), 13-23. ISSN 2321-6832. https://journals.innovareacademics.in/index.php/ijags/article/view/6802/4961.
  • [4] Brosnan, T., & Sun, D. W. (2001). Precooling techniques and applications for horticultural products—a review. International Journal of Refrigeration, 24(2), 154-170. https://doi.org/10.1016/S0140-7007(00)00017-7.
  • [5] Azzouz, K., Leducq, D., & Gobin, D. (2009). Enhancing the performance of household refrigerators with latent heat storage: An experimental investigation. International Journal of Refrigeration, 32(7), 1634-1644. https://doi.org/10.1016/j.ijrefrig.2009.03.012.
  • [6] Yusufoglu, Y., Apaydin, T., Yilmaz, S., & Paksoy, H. O. (2015). Improving performance of household refrigerators by incorporating phase change materials. International Journal of Refrigeration, 57, 173-185. https://doi.org/10.1016/j.ijrefrig.2015.04.020.
  • [7] Kiran-Yildirim, B. (2022). Performance evaluation of a laboratory-scale cooling system as a household refrigerator with phase change materials. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 5852-5867. https://doi.org/10.1080/15567036.2022.2089300.
  • [8] Khan, M. I. H. & Afroz H. M. M. (2013). Effect of Phase Change Material on Performance of a Household Refrigerator. Asian Journal of Applied Sciences, 6, 56-67. https://doi.org/10.3923/ajaps.2013.56.67
  • [9] Marques, A. C., Davies, G. F., Evans, J. A., Maidment, G. G., & Wood, I. D. (2013). Theoretical modelling and experimental investigation of a thermal energy storage refrigerator. Energy, 55, 457-465. https://doi.org/10.1016/j.energy.2013.03.091.
  • [10] Khan, M. I. H. (2016). Conventional refrigeration systems using phase change material: a review. International Journal of Air-Conditioning and Refrigeration, 24(03), 1630007. https://doi.org/10.1142/S201013251630007X.
  • [11] Oró, E., De Gracia, A., Castell, A., Farid, M. M., & Cabeza, L. F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99, 513-533. https://doi.org/10.1016/j.apenergy.2012.03.058.
  • [12] Joybari, M. M., Haghighat, F., Moffat, J., & Sra, P. (2015). Heat and cold storage using phase change materials in domestic refrigeration systems: The state-of-the-art review. Energy Buildings, 106, 111-124. https://doi.org/10.1016/j.enbuild.2015.06.016.
  • [13] Le, T. L., Duong, X. Q., Nguyen, D. T., Nguyen, P. Q. P., Rajamohan, S., Vo, A. V., & Le, H. S. (2023). Application of phase change materials in improving the performance of refrigeration systems. Sustainable Energy Technologies and Assessments, 56, 103097. https://doi.org/10.1016/j.seta.2023.103097.
  • [14] Rocha, T. T. M., Teggar, M., Trevizoli, P. V., & de Oliveira, R. N. (2023). Potential of latent thermal energy storage for performance improvement in small-scale refrigeration units: A review. Renewable and Sustainable Energy Reviews, 187, 113746. https://doi.org/10.1016/j.rser.2023.113746.
  • [15] Sekhar, S. J., Raj, M. A. F., Raveendran, P. S., & Murugan, P. C. (2022). Cladding phase change materials in freezing and chilling zones of household refrigerator to improve thermal performance and environmental benefits. Journal of Energy Storage, 55, 105476. https://doi.org/10.1016/j.est.2022.105476.
  • [16] Yilmaz, D., Mancuhan, E., & Yılmaz, B. (2020). Experimental investigation of PCM location in a commercial display cabinet cooled by a transcritical CO2 system. International Journal of Refrigeration, 120, 396-405. https://doi.org/10.1016/j.ijrefrig.2020.09.006.
  • [17] Kalidasan, B., Pandey, A. K., Rahman, S., Khir, H., & Zaed, M. A. (2024). Experimental investigation on nucleating agent for low temperature binary eutectic salt hydrate phase change material. E3S Web of Conferences, 488, 01004. https://doi.org/10.1051/e3sconf/202448801004.
  • [18] Hou, P., Mao, J., Chen, F., Li, Y., & Dong, X. (2018). Preparation and thermal performance enhancement of low temperature eutectic composite phase change materials based on Na2SO4· 10H2O. Materials, 11(11), 2230. https://doi.org/10.3390/ma11112230.
  • [19] Zhao, L., Xing, Y., Liu, X., & Luo, Y. (2018). Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage. Applied Thermal Engineering, 143, 172-181. https://doi.org/10.1016/j.applthermaleng.2018.07.094.
  • [20] Liang, Q., Zhang, H., Li, Y., Zhang, X., & Pan, D. (2024). Multifunctional response of biomass carbon/sodium sulfate decahydrate composite phase change materials. Journal of Energy Storage, 83, 110621. https://doi.org/10.1016/j.est.2024.110621.
  • [21] Kiran-Yildirim, B., T. Noya, E. Mancuhan, & S. Titiz-Sargut. (2021). Investigation of Energy Consumption for a PCM Integrated Laboratory Scale Cooling System: An Experimental Study. 23rd Congress on Thermal Science and Technology with International Participation (ULIBTK 2021), Turkiye. 1, 1002-1008. https://drive.google.com/drive/folders/1dmF8npoQu3qAe3NCtv0xLElqJyi-jIRD.
  • [22] Lide, D. R. (2009). CRC handbook of chemistry and physics (90th Edition). CRC press. ISBN 9781420090840.
  • [23] Smith, R. A., & McBroom, R. B. (2000). Boron oxides, boric acid, and borates. Kirk‐Othmer Encyclopedia of Chemical Technology. https://doi.org/10.1002/0471238961.0215181519130920.a01.
  • [24] Kıran Yıldırım, B., Düzgün, E., Kül, B., Gök, S., Mançuhan, E., Sargut, S., & Ersoy, A. (2023). Ön Soğutma İşlemi Yapılan Bir Soğuk Depolama Sisteminde Enerji Tüketiminin Faz Değişim Malzemesi Kullanılarak İncelenmesi [Examination of Energy Consumption in a Cold Storage System used for the precooling process with Phase Change Material], 15. Ulusal Kimya Mühendisliği Kongresi (UKMK-15) [15. National Chemical Engineering Congress (UKMK-15)], Türkiye, 782-785. https://drive.google.com/file/d/1NtbxaLs0CqKo9Z4nJNKk-mbrP_HVkx43/view.
  • [25] Lane, G. A. (1983). Solar Heat Storage (Volume I: Latent Heat Material). CRC Press. https://doi.org/10.1201/9781351076753.
  • [26] Garg, H. P., Mullick, S. C., & Bhargava, A. K. (1985). Solar Thermal Energy Storage. Springer Dordrecht. https://doi.org/10.1007/978-94-009-5301-7.
  • [27] Tek, Y. (2009). Synthesis, characterization and physicochemical properties of urea and thiourea-fatty acid condensation compounds (Thesis No. 244875). [Master's thesis, Gaziosmanpaşa University]. Council of Higher Education.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnorganik Kimya (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Berçem Kıran Yıldırım 0000-0002-7504-0176

Ebru Mancuhan 0000-0002-7108-4497

Sibel Sargut 0000-0002-0062-1531

Yayımlanma Tarihi 28 Haziran 2024
Gönderilme Tarihi 14 Aralık 2023
Kabul Tarihi 19 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kıran Yıldırım, B., Mancuhan, E., & Sargut, S. (2024). Boraks dekahidrat çözeltilerinin faz değiştiren malzeme olarak ön soğutma işlemi yapılan soğuk depolama sisteminde kullanımı. Journal of Boron, 9(2), 62-68. https://doi.org/10.30728/boron.1405029