In this study, Sc₂CBT (T=H, F) Janus MXene monolayers have been investigated for the first time using density functional theory calculations. The lattice constants, bond lengths, cohesive energies, magnetic properties, and electronic properties have been examined in detail. The obtained findings have shown that Sc₂CBH Janus MXene monolayer is energetically stable. The calculations showed that none of the monolayers exhibits magnetic ordering. The electronic band structure calculations have demonstrated that both monolayers exhibit metallic character. Additionally, it was understood that the boron element significantly affects the electronic properties of both monolayers. This study is the first to investigate Sc₂CBH and Sc₂CBF Janus monolayers, and the findings are discussed in detail.
[1] Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., ... & Barsoum, M.W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248-4253. https://doi.org/10.1002/adma.201102306
[2] Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2013). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992-1005. https://doi.org/10.1002/adma.201304138
[3] Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78-81. https://doi.org/10.1038/nature13970
[4] Yu, X. F., Li, Y.C., Cheng, J. B., Liu, Z. B., Li, Q. Z., Li, W. Z., Yang, X., & Xiao, B. (2015). Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Applied Materials & Interfaces, 7(24), 13707-13713. https://doi.org/10.1021/acsami.5b03737
[5] Khazaei, M., Ranjbar, A., Ghorbani-Asl, M., Arai, M., Sasaki, T., Liang, Y., & Yunoki, S. (2016). Nearly free electron states in MXenes. Physical Review B, 93(20), 205125. https://doi.org/10.1103/PhysRevB.93.205125
[6] Feng, L., Zha, X. H., Luo, K., Huang, Q., He, J., Liu, Y., ... & Du, S. (2017). Structures and mechanical and electronic properties of the Ti2CO2 MXene incorporated with neighboring elements (Sc, V, B and N), Journal of Electronic Materials, 46(4), 2460-2466. https://doi.org/10.1007/s11664-017-5311-5
[7] Zhang, Y., Sa, B., Miao, N., Zhou, J., & Sun, Z. (2021). Computational mining of Janus Sc2C-based MXenes for spintronic, photocatalytic, and solar cell applications. Journal of Material Chemistry A, 9(17), 10882-10892. https://doi.org/10.1039/D1TA00614B
[8] Xiong, K., Cheng, Z., Liu, J., Liu, P. F., & Zi, Z. (2023). Computational studies on functionalized Janus MXenes MM’CT2, (M, M’ = Zr, Ti, Hf, M ≠ M’; T = -O, -F, -OH): Photoelectronic properties and potential photocatalytic activities. RSC Advances, 13(12), 7972-7979. https://doi.org/10.1039/D3RA00303E
[9] Murari, H., & Ghosh, S. (2024). Symmetry lowering through surface engineering and improved thermoelectric properties in Janus MXenes. Nanoscale, 16(23), 11336-11349. https://doi.org/10.1039/D4NR00568F
[10] Natu, V., & Barsoum, M. W. (2023). MXene surface terminations: A perspective. Journal of Physical Chemistry C, 127(41), 20197-20206. https://doi.org/10.1021/acs.jpcc.3c04324
[11] Ali, M. A., Nasir, M. T., Khatun, M. R., Islam, A. K. M. A., & Naqib, S. H. (2016). An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2CAlC MAX compound. Chinese Physics B, 25(10), 103102. http://doi.org/10.1088/1674-1056/25/10/103102
[12] Lv, X., Wei, W., Sun, Q., Lin, Y., Huang, B., & Dai, Y. (2017). Sc2C as a promising anode material with high mobility and capacity: A first-principles study. ChemPhysChem, 18(12), 1627-1634. https://doi.org/10.1002/cphc.201700181
[13] Hu, Q., Wang, H., Wu, Q., Ye, X., Zhou, A., Sun, D., ... & He, J. (2014). Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations. International Journal of Hydrogen Energy, 39(20), 10606-10612. https://doi.org/10.1016/j.ijhydene.2014.05.037
[14] Kumar, S., & Schwingenschlögl, U. (2016), Thermoelectric performance of functionalized Sc2C MXenes. Physical Review B, 94(3), 035405. https://doi.org/10.1103/PhysRevB.94.035405
[15] Liu, J. H., Kan, X., Amin, B., Gan, L. Y., & Zhao, Y. (2017). Theoretical explanation of the potential applications of Sc-based MXenes. Physical Chemistry Chemical Physics, 19(48), 32253-32261. https://doi.org/10.1039/C7CP06224A
[16] Cui, X. H., Li, X. H., Zhang R. Z., Cui, H. L., & Yan, H. T. (2023). Theoretical insight into the electronic, optical, and photocatalytic properties and quantum capacitance of Sc2T2 (T = F, P, Cl, Se, Br, O, Si, S, OH) MXenes. Vacuum, 207, 111615. https://doi.org/10.1016/j.vacuum.2022.111615
[17] Modi, N., Naik, Y., Khengar, S. J., Shah, D. B., & Thakor, P. B. (2024). Pressure induced structural, electronic, and optical properties of Sc2CBr2 MXene monolayer:A density functional approach. Computational and Theoretical Chemistry, 1232, 114466. https://doi.org/10.1016/j.comptc.2024.114466
[18] Ozcan, S., & Biel, B. (2023). Exploring a novel class of Janus MXenes by first principles calculations: Structural, electronic, and magnetic properties of Sc2CXT, X = O, F, OH; T=C, S, N. Physical Chemistry Chemical Physics, 25(3), 1881-1888. https://doi.org/10.1039/d2cp04713f
[19] Zhu, S. Y., Li, Y. Q., Wang, X. Y., Tang, D. S., He, Q. W., Liu, C., ... & Wang X. C. (2023). Theoretical investigations of Sc2C based functionalized MXenes for applications in nanoelectromechanical systems. Physica E: Low Dimensional Systems and Nanostructures, 145, 115491. https://doi.org/10.1016/j.physe.2022.115491
[20] Soler, J. M., Artacho, E., Gale, J. D, García, A., Junquera, J., Ordejón, P., & Sanchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745- 2779. https://doi.org/10.1088/0953-8984/14/11/302
[21] Ordejón, P., Artacho, E., & Soler, J. M. (1996). Self-consistent order-N density-functional calculations for very large systems. Physical Review B, 53(16), 10441- 10444. https://doi.org/10.1103/PhysRevB.53.R10441
[22] Junquera, J., Paz, Ó., Sánchez-Portal, D., & Artacho, E. (2001). Numerical atomic orbitals for linear-scaling calculations. Physical Review B, 64(23), 235111. https://doi.org/10.1103/PhysRevB.64.235111
[23] Perdew, J. P., Burke, K., &, Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
[24] Zhang, Y., & Yang, W. (1998). Comment on “Generalized gradient approximation made simple”, Physical Review Letters, 80(4), 890. https://doi.org/10.1103/PhysRevLett.80.890
[25] Ceperley, D. M., & Alder B. J. (1980). Ground state of the electron gas by a stochastic method. Physical Review Letters, 45(7), 566-569. https://doi.org/10.1103/PhysRevLett.45.566
[26] Berland, K., & Hyldgaard, P. (2014), Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Physical Review B, 89(3), 035412. https://doi.org/10.1103/PhysRevB.89.035412
[27] Hestenes, M. R., & Steiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standarts, 49(6), 409-436. https://doi.org/10.6028/JRES.049.044
[28] Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188. https://doi.org/10.1103/PhysRevB.13.5188
[29] Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993-2006. https://doi.org/10.1103/PhysRevB.43.1993
[30] Vela, A., Medel, V., & Trickey, S. B. (2009). Variable Lieb-Oxford bound satisfaction in a generalized gradient exchange-correlation functional. Journal of Chemical Physics, 130(24), 244103. https://doi.org/10.1063/1.3152713
[31] Hwang, S. W., Tao, H., Kim D. H., Cheng, H., Song, J. K., Rill, E., ... & Rogers J. A. (2012), A physically transient form of silicon electronics. Science, 337(6102), 1640- 1644. https://doi.org/10.1126/science.1226325
[32] Zou, R., Li, J., Yang, T., Zhang, Y., Jiao, J., Wong, K. L., & Wang, J. (2021). Biodegradable manganese engineered nanocapsules for tumor-sensitive nearinfrared persistent luminescence/magnetic resonance imaging and simultaneous chemotherapy. Theranostics, 11(17), 8448-8463. https://doi.org/10.7150/thno.59840
Structural and electronic properties of Janus Sc2CBT (T= H, F) MXenes
In this study, Sc₂CBT (T=H, F) Janus MXene monolayers have been investigated for the first time using density functional theory calculations. The lattice constants, bond lengths, cohesive energies, magnetic properties, and electronic properties have been examined in detail. The obtained findings have shown that Sc₂CBH Janus MXene monolayer is energetically stable. The calculations showed that none of the monolayers exhibits magnetic ordering. The electronic band structure calculations have demonstrated that both monolayers exhibit metallic character. Additionally, it was understood that the boron element significantly affects the electronic properties of both monolayers. This study is the first to investigate Sc₂CBH and Sc₂CBF Janus monolayers, and the findings are discussed in detail.
[1] Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., ... & Barsoum, M.W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248-4253. https://doi.org/10.1002/adma.201102306
[2] Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2013). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992-1005. https://doi.org/10.1002/adma.201304138
[3] Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78-81. https://doi.org/10.1038/nature13970
[4] Yu, X. F., Li, Y.C., Cheng, J. B., Liu, Z. B., Li, Q. Z., Li, W. Z., Yang, X., & Xiao, B. (2015). Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Applied Materials & Interfaces, 7(24), 13707-13713. https://doi.org/10.1021/acsami.5b03737
[5] Khazaei, M., Ranjbar, A., Ghorbani-Asl, M., Arai, M., Sasaki, T., Liang, Y., & Yunoki, S. (2016). Nearly free electron states in MXenes. Physical Review B, 93(20), 205125. https://doi.org/10.1103/PhysRevB.93.205125
[6] Feng, L., Zha, X. H., Luo, K., Huang, Q., He, J., Liu, Y., ... & Du, S. (2017). Structures and mechanical and electronic properties of the Ti2CO2 MXene incorporated with neighboring elements (Sc, V, B and N), Journal of Electronic Materials, 46(4), 2460-2466. https://doi.org/10.1007/s11664-017-5311-5
[7] Zhang, Y., Sa, B., Miao, N., Zhou, J., & Sun, Z. (2021). Computational mining of Janus Sc2C-based MXenes for spintronic, photocatalytic, and solar cell applications. Journal of Material Chemistry A, 9(17), 10882-10892. https://doi.org/10.1039/D1TA00614B
[8] Xiong, K., Cheng, Z., Liu, J., Liu, P. F., & Zi, Z. (2023). Computational studies on functionalized Janus MXenes MM’CT2, (M, M’ = Zr, Ti, Hf, M ≠ M’; T = -O, -F, -OH): Photoelectronic properties and potential photocatalytic activities. RSC Advances, 13(12), 7972-7979. https://doi.org/10.1039/D3RA00303E
[9] Murari, H., & Ghosh, S. (2024). Symmetry lowering through surface engineering and improved thermoelectric properties in Janus MXenes. Nanoscale, 16(23), 11336-11349. https://doi.org/10.1039/D4NR00568F
[10] Natu, V., & Barsoum, M. W. (2023). MXene surface terminations: A perspective. Journal of Physical Chemistry C, 127(41), 20197-20206. https://doi.org/10.1021/acs.jpcc.3c04324
[11] Ali, M. A., Nasir, M. T., Khatun, M. R., Islam, A. K. M. A., & Naqib, S. H. (2016). An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2CAlC MAX compound. Chinese Physics B, 25(10), 103102. http://doi.org/10.1088/1674-1056/25/10/103102
[12] Lv, X., Wei, W., Sun, Q., Lin, Y., Huang, B., & Dai, Y. (2017). Sc2C as a promising anode material with high mobility and capacity: A first-principles study. ChemPhysChem, 18(12), 1627-1634. https://doi.org/10.1002/cphc.201700181
[13] Hu, Q., Wang, H., Wu, Q., Ye, X., Zhou, A., Sun, D., ... & He, J. (2014). Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations. International Journal of Hydrogen Energy, 39(20), 10606-10612. https://doi.org/10.1016/j.ijhydene.2014.05.037
[14] Kumar, S., & Schwingenschlögl, U. (2016), Thermoelectric performance of functionalized Sc2C MXenes. Physical Review B, 94(3), 035405. https://doi.org/10.1103/PhysRevB.94.035405
[15] Liu, J. H., Kan, X., Amin, B., Gan, L. Y., & Zhao, Y. (2017). Theoretical explanation of the potential applications of Sc-based MXenes. Physical Chemistry Chemical Physics, 19(48), 32253-32261. https://doi.org/10.1039/C7CP06224A
[16] Cui, X. H., Li, X. H., Zhang R. Z., Cui, H. L., & Yan, H. T. (2023). Theoretical insight into the electronic, optical, and photocatalytic properties and quantum capacitance of Sc2T2 (T = F, P, Cl, Se, Br, O, Si, S, OH) MXenes. Vacuum, 207, 111615. https://doi.org/10.1016/j.vacuum.2022.111615
[17] Modi, N., Naik, Y., Khengar, S. J., Shah, D. B., & Thakor, P. B. (2024). Pressure induced structural, electronic, and optical properties of Sc2CBr2 MXene monolayer:A density functional approach. Computational and Theoretical Chemistry, 1232, 114466. https://doi.org/10.1016/j.comptc.2024.114466
[18] Ozcan, S., & Biel, B. (2023). Exploring a novel class of Janus MXenes by first principles calculations: Structural, electronic, and magnetic properties of Sc2CXT, X = O, F, OH; T=C, S, N. Physical Chemistry Chemical Physics, 25(3), 1881-1888. https://doi.org/10.1039/d2cp04713f
[19] Zhu, S. Y., Li, Y. Q., Wang, X. Y., Tang, D. S., He, Q. W., Liu, C., ... & Wang X. C. (2023). Theoretical investigations of Sc2C based functionalized MXenes for applications in nanoelectromechanical systems. Physica E: Low Dimensional Systems and Nanostructures, 145, 115491. https://doi.org/10.1016/j.physe.2022.115491
[20] Soler, J. M., Artacho, E., Gale, J. D, García, A., Junquera, J., Ordejón, P., & Sanchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745- 2779. https://doi.org/10.1088/0953-8984/14/11/302
[21] Ordejón, P., Artacho, E., & Soler, J. M. (1996). Self-consistent order-N density-functional calculations for very large systems. Physical Review B, 53(16), 10441- 10444. https://doi.org/10.1103/PhysRevB.53.R10441
[22] Junquera, J., Paz, Ó., Sánchez-Portal, D., & Artacho, E. (2001). Numerical atomic orbitals for linear-scaling calculations. Physical Review B, 64(23), 235111. https://doi.org/10.1103/PhysRevB.64.235111
[23] Perdew, J. P., Burke, K., &, Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
[24] Zhang, Y., & Yang, W. (1998). Comment on “Generalized gradient approximation made simple”, Physical Review Letters, 80(4), 890. https://doi.org/10.1103/PhysRevLett.80.890
[25] Ceperley, D. M., & Alder B. J. (1980). Ground state of the electron gas by a stochastic method. Physical Review Letters, 45(7), 566-569. https://doi.org/10.1103/PhysRevLett.45.566
[26] Berland, K., & Hyldgaard, P. (2014), Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Physical Review B, 89(3), 035412. https://doi.org/10.1103/PhysRevB.89.035412
[27] Hestenes, M. R., & Steiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standarts, 49(6), 409-436. https://doi.org/10.6028/JRES.049.044
[28] Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188. https://doi.org/10.1103/PhysRevB.13.5188
[29] Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993-2006. https://doi.org/10.1103/PhysRevB.43.1993
[30] Vela, A., Medel, V., & Trickey, S. B. (2009). Variable Lieb-Oxford bound satisfaction in a generalized gradient exchange-correlation functional. Journal of Chemical Physics, 130(24), 244103. https://doi.org/10.1063/1.3152713
[31] Hwang, S. W., Tao, H., Kim D. H., Cheng, H., Song, J. K., Rill, E., ... & Rogers J. A. (2012), A physically transient form of silicon electronics. Science, 337(6102), 1640- 1644. https://doi.org/10.1126/science.1226325
[32] Zou, R., Li, J., Yang, T., Zhang, Y., Jiao, J., Wong, K. L., & Wang, J. (2021). Biodegradable manganese engineered nanocapsules for tumor-sensitive nearinfrared persistent luminescence/magnetic resonance imaging and simultaneous chemotherapy. Theranostics, 11(17), 8448-8463. https://doi.org/10.7150/thno.59840
Bölen, E. (2024). Structural and electronic properties of Janus Sc2CBT (T= H, F) MXenes. Journal of Boron, 9(3), 129-134. https://doi.org/10.30728/boron.1503148