Araştırma Makalesi
BibTex RIS Kaynak Göster

Poliüretan bazlı köpüklerde yanıcılığın ve ısı iletkenliğinin azaltılması için bor türevlerinin değerlendirilmesi

Yıl 2024, Cilt: 9 Sayı: 4, 163 - 172, 31.12.2024
https://doi.org/10.30728/boron.1551164

Öz

Poliüretan (PU) esaslı malzemeler ısı ve elektrik yalıtımı, hafiflik, yüksek basınç dayanımı gibi özelliklerinden dolayı özellikle ısı yalıtımı, inşaat ve otomotiv sektörlerinde geniş uygulama alanlarına sahiptir. Ayrıca bor ve türevlerinin katma değerli ürünlere dönüştürülmesine yönelik çalışmalar önem kazanmıştır. Bu çalışmada farklı ağırlık fraksiyonlarındaki bor türevlerinin PU'ya eklenmesiyle elde edilen kompozit malzemelerin mekanik, fiziksel, termal ve tutuşabilirlik özellikleri incelenmiştir. Öğütülmüş üleksit (U), boraks pentahidrat, boraks dekahidrat ve öğütülmüş kolemanit (Col) gibi bor türevleri PU'ya ağırlıkça %1, 3 ve 5 oranlarında eklenmiştir. PU bazlı kompozitlerde bor türevleri kullanıldığında yoğunluk, ısıl iletkenlik ve sıkıştırma modülü değerlerinin arttığı gösterilmiştir. Aynı zamanda PU köpüğe toprak U veya Col ilavesi su emme değerini düşürmüş ve su emme kapasitesine olumlu katkı sağlamıştır. Ağırlıkça %5 Col ilave edilen PU malzemesi en iyi sonuçları üretirken, %3,14'ün en düşük su emme kapasitesi olduğu keşfedildi. Bor türevlerinin eklenmesi PU köpük kompozitlerin tutuşabilirlik özelliklerini arttırmıştır. Özellikle öğütülmüş U veya boraks pentahidrat dolgu maddeleri, PU köpük kompozitlerinin tutuşabilirlik testlerinde önemli bir gelişme gösterdi. U (%1) PU'nun kendi kendine sönme süresini 2,96'dan 0 saniyeye düşürerek olağanüstü bir performans sergilemiştir.

Proje Numarası

Project no: 21768

Kaynakça

  • Andersons, J., Kirpluks. M., Cabulis. P., Kalnins. K., & Cabulis. U. (2020). Bio-based rigid high-density polyurethane foams as a structural thermal break material. Construction and Building Materials, 260, 120471. https://doi.org/10.1016/j.conbuildmat.2020.120471
  • Papadopoulos, A. M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37(1), 77-86. https://doi. org/10.1016/j.enbuild.2004.05.006
  • Aditya, L., Mahlia, T. M. I., Rismanchi, B., Ng, H. M., Hasan, M. H., Metselaar, H. S. C., … & Aditiya, H. B. (2017). A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Reviews, 73, 1352-1365. https://doi. org/10.1016/j.rser.2017.02.034
  • Kim, J. M., Kim, J. H., Ahn, J. H., Kim, J. D., Park, S., Park, K. H., & Lee, J. M. (2018). Synthesis of nanoparticle-enhanced polyurethane foams and evaluation of mechanical characteristics. Composites Part B: Engineering, 136, 28-38. https://doi.org/10.1016/j.compositesb.2017.10.025
  • Gama, N. V., Soares, B., Freire, C. S. R., Silva, R., Neto, C. P., Barros-Timmons, A., & Ferreira, A. (2015). Biobased polyurethane foams toward applications beyond thermal insulation. Materials & Design, 76, 77-85. https://doi.org/10.1016/j.matdes.2015.03.032
  • Suleman, S., Khan, S. M., Gull, N., Aleem, W., Shafiq, M., & Jamil, T. (2014). A comprehensive short review on polyurethane foam, International Journal of Innovation and Scientific Research, 12(1), 165-169. Retrieved from https://ijisr.issr-journals.org/abstract.php?article=IJISR-14-294-05
  • Skleničková, K., Abbrent, S., Halecký, M., Kočí, V., & Beneš, H. (2022). Biodegradability and ecotoxicity of polyurethane foams: A review. Critical Reviews in Environmental Science and Technology, 52(2), 157-202. https://doi.org/10.1080/10643389.2020.1818496
  • Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 3(3), 93-101. https://doi.org/10.1016/j.aiepr.2020.07.002
  • Shi, L., Li, Z. M., Xie, B. H., Wang, J. H., Tian, C. R., & Yang, M. B. (2006). Flame retardancy of differentsized expandable graphite particles for high-density rigid polyurethane foams. Polymer International, 55(8), 862-871. https://doi.org/10.1002/pi.2021
  • Acuña, P., Lin, X., Calvo, M. S., Shao, Z., Pérez, N., Villafañe, F., ... & Wang, D. Y. (2020). Synergistic effect of expandable graphite and phenyl phosphonic-aniline salt on flame retardancy of rigid polyurethane foam. Polymer Degradation and Stability, 179, 109274. https://doi.org/10.1016/j.polymdegradstab.2020.109274
  • Aydoğan, B., & Usta, N. (2019). Fire behavior assessment of rigid polyurethane foams containing nano clay and intumescent flame retardant based on cone calorimeter tests. Journal of Chemical Technology and Metallurgy, 54(1), 55-63.
  • Cao, Z. J., Liao, W., Wang, S. X., Zhao, H. B., & Wang, Y. Z. (2019). Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chemical Engineering Journal, 361, 1245-1254. https://doi.org/10.1016/j.cej.2018.12.176
  • Liu, X., Hao, J., & Gaan, S. (2016). Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Advances, 6(78), 74742-74756. https://doi.org/10.1039/C6RA14345H
  • Kairytė, A., Kirpluks, M., Ivdre, A., Cabulis, U., Vaitkus, S., & Pundienė, I. (2018). Cleaner production of polyurethane foam: Replacement of conventional raw materials, assessment of fire resistance and environmental impact. Journal of Cleaner Production, 183, 760-771. https://doi.org/10.1016/j.jclepro.2018.02.164
  • Choi, J. H., Chae, S. U., Hwang, E. H., & Choi, D. M. (2022). Fire propagation characteristics and fire risks of polyurethanes: Effects of material type (foam & board) and added flame retardant. Fire, 5(4), 105. https://doi.org/10.3390/fire5040105
  • Açikel, S. M. (2018). Development of commercial flame retardant in upholstery leathers by boron derivatives. Textile and Apparel, 28(4), 319-323. https://doi.org/10.32710/tekstilvekonfeksiyon.493101
  • Gurlek, G., Altay, L., & Sarikanat, M. (2019). Thermal conductivity and flammability of ulexite filled rigid polyurethane materials. Acta Physica Polonica A, 135(4), 825-828. https://doi.org/10.12693/APhysPolA.135.825
  • Karslıoğlu, A., Onur, M. İ., & Balaban, E. (2022). Investigation of boron waste usage in civil engineering applications. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 11(3), 727-735. https://doi.org/10.28948/ngmuh.1084831
  • Sokmen, N., & Buyukakinci, B. Y. (2018). The usage of boron/ boron compounds in the textile industry and its situation in Turkey. CBU International Conference on Innovations in Science and Education, 6, 1158-1165. https://doi.org/10.12955/cbup.v6.1309
  • Paciorek-Sadowska, J. (2012). Modification of purpır foams by boroorganic compound prepared on the basis of di(hydroxymethyl)urea. Journal of Porous Materials, 19(2), 161-171. https://doi.org/10.1007/s10934-011-9456-y
  • Yeler, O., Köseoğlu, M. F., Usta, N., & Demi̇ryuğuran, F. (2015). Rijit poliüretan köpük malzemelere bor oksit ilavesinin ısıl bozunma ve yanma özelliklerine etkilerinin incelenmesi. İleri Teknoloji Bilimleri Dergisi, 99, 34-39. Retrieved from https://dergipark.org.tr/en/pub/duzceitbd/issue/37903/365714
  • Zarzyka, I. (2016). Preparation and characterization of rigid polyurethane foams with carbamide and borate groups: rigid polyurethane foams with carbamide and borate groups. Polymer International, 65(12), 1430-1440. https://doi.org/10.1002/pi.5198
  • Li, O., Tamrakar, S., Iyigundogdu, Z., Mielewski, D., Wyss, K., Tour, J. M., & Kiziltas, A. (2023). Flexible polyurethane foams reinforced with graphene and boron nitride nanofillers. Polymer Composites, 44(3), 1494-1511. https://doi.org/10.1002/pc.27183
  • Montemayor, M. D., Vest, N. A., Palen, B., Smith, D. L., & Grunlan, J. C. (2024). Boron-containing polyelectrolyte complex for self-extinguishing polyurethane foam. ACS Applied Polymer Materials, 6(9), 5226-5234. https://doi.org/10.1021/acsapm.4c00400
  • Chmiel, E., Oliwa, R., & Lubczak, J. (2019). Boroncontaining non-flammable polyurethane foams. Polymer-Plastics Technology and Materials, 58(4), 394-404. https://doi.org/10.1080/03602559.2018.1471717
  • Xu, B., Zhao, S., Shan, H., Qian, L., Wang, J., & Xin, F. (2022). Effect of two boron compounds on smokesuppression and flame-retardant properties for rigid polyurethane foams. Polymer International, 71(10), 1210-1219. https://doi.org/10.1002/pi.6403
  • Tsuyumoto, I., Onoda, Y., Hashizume, F., & Kinpara, E. (2011). Flame-retardant rigid polyurethane foams prepared with amorphous sodium polyborate. Journal of Applied Polymer Science, 122(3), 1707-1711. https://doi.org/10.1002/app.34025
  • Dongmei, X., Xiu, L., Jie, F., & Jianwei, H. (2015). Preparation of boron-coated expandable graphite and its application in flame retardant rigid polyurethane foam. Chemical Research in Chinese Universities, 31(2), 315-320. https://doi.org/10.1007/s40242-015-4101-y
  • Akdogan, E., Erdem, M., Ureyen, M. E., & Kaya, M. (2020). Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame-retardant properties. Journal of Applied Polymer Science, 137(1), 47611. https://doi.org/10.1002/app.47611
  • Radzi, A. M., Sapuan, S. M., Jawaid, M., & Mansor, M. R. (2019). Water absorption, thickness swelling, and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 3988-3994. https://doi.org/10.1016/j.jmrt.2019.07.007
  • Taherishargh, M., Belova, I. V., Murch, G. E., & Fiedler, T. (2014). Low-density expanded perlitealuminium syntactic foam. Materials Science and Engineering: A, 604, 127-134. https://doi.org/10.1016/j.msea.2014.03.003
  • Uçar, N., Çalık, A., Emre, M., & Akkurt, I. (2021). Physical radiation shielding properties of concrete contains colemanite and ulexite. Indoor and Built Environment, 30(10), 1827-1834. https://doi.org/10.1177/1420326X20967974
  • Product Technical Data Sheet-Borax Decahydrate. (2023). [Online] Available: https://www.etimaden.gov.tr/storage/uploads/2018/01/10-2017-Borax_Deca_Powder.pdf
  • Product Technical Data Sheet- Borax Pentahydrate. (2023). [Online] Available: https://www.etimaden.gov.tr/storage/pages/March2023/TR-Etifert-B15.pdf
  • Soyer, Ş., Gürlek, G., & Kılıç, E. (2023). Valorization of leather industry waste in polyurethane composites for reduced flammability. Journal of Material Cycles and Waste Management, 25(1), 314-323. https://doi.org/10.1007/s10163-022-01533-3
  • Zhang, H., Fang, W.Z., Li, Y. M., & Tao, W.Q. (2017). Experimental study of the thermal conductivity of polyurethane foams. Applied Thermal Engineering, 115, 528-538. https://doi.org/10.1016/j.applthermaleng.2016.12.057
  • Irgat, M. S., & Yukselen-Aksoy, Y. (2019). Thermal conductivity behavior of boron added sand-bentonite mixtures. Proceedings of the XVII ECSMGE-2019, (Geotechnical Engineering, Foundation of the Future), Iceland, 4388-4393. https://doi.org/10.32075/17ECSMGE-2019-0911
  • Guerra, V., Wan, C., & McNally, T. (2019). Thermal conductivity of 2d nano-structured boron nitride (bn) and its composites with polymers. Progress in Materials Science, 100, 170-186. https://doi.org/10.1016/j.pmatsci.2018.10.002
  • Orhan, R., Aydoğmuş, E., Topuz, S., & Arslanoğlu, H. (2021). Investigation of thermo-mechanical characteristics of borax reinforced polyester composites. Journal of Building Engineering, 42, 103051. https://doi.org/10.1016/j.jobe.2021.103051
  • Abdulrahman, S. T., Ahmad, Z., Thomas, S., Maria, H. J., & Rahman, A. A. (2020). Viscoelastic and thermal properties of natural rubber low-density polyethylene composites with boric acid and borax. Journal of Applied Polymer Science, 137(44), 49372. https://doi.org/10.1002/app.49372
  • Łukasiewicz, B., & Lubczak, J. (2014). Polyurethane foams with purine ring and boron. Journal of Cellular Plastics, 50(4), 337-359. https://doi.org/10.1177/0021955X14525958
  • Kawagoe, M., Doi, Y., Fuwa, N., Yasuda, T., & Takata, K. (2001). Effects of absorbed water on the interfacial fracture between two layers of unsaturated polyester and glass. Journal of Materials Science, 36, 5161-5167. https://doi.org/10.1023/A:1012437626988
  • Bishay, I. K., Abd-El-Messieh, S. L., & Mansour, S. H. (2011). Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder. Materials & Design, 32(1), 62-68. https://doi.org/10.1016/j.matdes.2010.06.035
  • Kuru, D., Akpinar Borazan, A., & Guru, M. (2018). Effect of chicken feather and boron compounds as filler on mechanical and flame retardancy properties of polymer composite materials. Waste Management & Research, 36(11), 1029-1036. https://doi.org/10.1177/0734242X18804041
  • Seki, Y., Sever, K., Sarikanat, M., Sakarya, A., & Elik, E. (2013). Effect of huntite mineral on mechanical, thermal and morphological properties of polyester matrix. Composites Part B: Engineering, 45(1), 1534-1540. https://doi.org/10.1016/j.compositesb.2012.09.083
  • Yurtseven, R. (2019). Effects of ammonium polyphosphate/melamine additions on mechanical, thermal and burning properties of rigid polyurethane foams. Acta Physica Polonica A, 135(4), 775-777. https://doi.org/10.12693/APhysPolA.135.775
  • Bajwa, S. G., Bajwa, D. S., Holt, G., Coffelt, T., & Nakayama, F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 33(3), 747-755. https://doi.org/10.1016/j.indcrop.2011.01.017

Valorization of boron derivatives in polyurethane-based foams for reduced ignitability and thermal conductivity

Yıl 2024, Cilt: 9 Sayı: 4, 163 - 172, 31.12.2024
https://doi.org/10.30728/boron.1551164

Öz

Polyurethane (PU) based materials have wide application areas, especially in the thermal insulation, construction, and automotive sectors, due to their properties such as thermal and electrical insulation, lightness, and high compressive strength. In addition, studies on converting boron and its derivatives into value-added products have gained importance. In this study, the mechanical, physical, thermal, and ignitability properties of the composite materials obtained by adding boron derivatives of different weight fractions into PU were examined. Boron derivatives such as ground ulexite (U), borax pentahydrate, borax decahydrate, and ground colemanite (Col) were added to PU at 1, 3 and 5% by weight. It was shown that the density, thermal conductivity and compression modulus values increase when boron derivatives are used in PU-based composites. At the same time, the addition of ground U or Col to the PU foam reduced the water absorption value and made a positive contribution to the water absorption capacity. The PU material with 5 wt % Col added produced the greatest results, whereas 3.14% was discovered to be the lowest water absorption capability. The addition of boron derivatives increased the ignitability properties of PU foam composites. In particular, ground U or borax pentahydrate fillers showed substantial improvement in ignitability tests of PU foam composites. U (1%) demonstrated exceptional performance, reducing the PU's self-extinguishing time from 2.96 to 0 s.

Destekleyen Kurum

Ege University Office of Scientific Research Projects (Project no: 21768).

Proje Numarası

Project no: 21768

Teşekkür

The authors are grateful for the funding from Ege University Office of Scientific Research Projects (Project no: 21768). We would like to thank Prof. Dr. Mehmet Sarıkanat for his support. We would like to thank “Eti Maden Operations General Directorate” for their support in the supply of boron derivatives.

Kaynakça

  • Andersons, J., Kirpluks. M., Cabulis. P., Kalnins. K., & Cabulis. U. (2020). Bio-based rigid high-density polyurethane foams as a structural thermal break material. Construction and Building Materials, 260, 120471. https://doi.org/10.1016/j.conbuildmat.2020.120471
  • Papadopoulos, A. M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37(1), 77-86. https://doi. org/10.1016/j.enbuild.2004.05.006
  • Aditya, L., Mahlia, T. M. I., Rismanchi, B., Ng, H. M., Hasan, M. H., Metselaar, H. S. C., … & Aditiya, H. B. (2017). A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Reviews, 73, 1352-1365. https://doi. org/10.1016/j.rser.2017.02.034
  • Kim, J. M., Kim, J. H., Ahn, J. H., Kim, J. D., Park, S., Park, K. H., & Lee, J. M. (2018). Synthesis of nanoparticle-enhanced polyurethane foams and evaluation of mechanical characteristics. Composites Part B: Engineering, 136, 28-38. https://doi.org/10.1016/j.compositesb.2017.10.025
  • Gama, N. V., Soares, B., Freire, C. S. R., Silva, R., Neto, C. P., Barros-Timmons, A., & Ferreira, A. (2015). Biobased polyurethane foams toward applications beyond thermal insulation. Materials & Design, 76, 77-85. https://doi.org/10.1016/j.matdes.2015.03.032
  • Suleman, S., Khan, S. M., Gull, N., Aleem, W., Shafiq, M., & Jamil, T. (2014). A comprehensive short review on polyurethane foam, International Journal of Innovation and Scientific Research, 12(1), 165-169. Retrieved from https://ijisr.issr-journals.org/abstract.php?article=IJISR-14-294-05
  • Skleničková, K., Abbrent, S., Halecký, M., Kočí, V., & Beneš, H. (2022). Biodegradability and ecotoxicity of polyurethane foams: A review. Critical Reviews in Environmental Science and Technology, 52(2), 157-202. https://doi.org/10.1080/10643389.2020.1818496
  • Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 3(3), 93-101. https://doi.org/10.1016/j.aiepr.2020.07.002
  • Shi, L., Li, Z. M., Xie, B. H., Wang, J. H., Tian, C. R., & Yang, M. B. (2006). Flame retardancy of differentsized expandable graphite particles for high-density rigid polyurethane foams. Polymer International, 55(8), 862-871. https://doi.org/10.1002/pi.2021
  • Acuña, P., Lin, X., Calvo, M. S., Shao, Z., Pérez, N., Villafañe, F., ... & Wang, D. Y. (2020). Synergistic effect of expandable graphite and phenyl phosphonic-aniline salt on flame retardancy of rigid polyurethane foam. Polymer Degradation and Stability, 179, 109274. https://doi.org/10.1016/j.polymdegradstab.2020.109274
  • Aydoğan, B., & Usta, N. (2019). Fire behavior assessment of rigid polyurethane foams containing nano clay and intumescent flame retardant based on cone calorimeter tests. Journal of Chemical Technology and Metallurgy, 54(1), 55-63.
  • Cao, Z. J., Liao, W., Wang, S. X., Zhao, H. B., & Wang, Y. Z. (2019). Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chemical Engineering Journal, 361, 1245-1254. https://doi.org/10.1016/j.cej.2018.12.176
  • Liu, X., Hao, J., & Gaan, S. (2016). Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Advances, 6(78), 74742-74756. https://doi.org/10.1039/C6RA14345H
  • Kairytė, A., Kirpluks, M., Ivdre, A., Cabulis, U., Vaitkus, S., & Pundienė, I. (2018). Cleaner production of polyurethane foam: Replacement of conventional raw materials, assessment of fire resistance and environmental impact. Journal of Cleaner Production, 183, 760-771. https://doi.org/10.1016/j.jclepro.2018.02.164
  • Choi, J. H., Chae, S. U., Hwang, E. H., & Choi, D. M. (2022). Fire propagation characteristics and fire risks of polyurethanes: Effects of material type (foam & board) and added flame retardant. Fire, 5(4), 105. https://doi.org/10.3390/fire5040105
  • Açikel, S. M. (2018). Development of commercial flame retardant in upholstery leathers by boron derivatives. Textile and Apparel, 28(4), 319-323. https://doi.org/10.32710/tekstilvekonfeksiyon.493101
  • Gurlek, G., Altay, L., & Sarikanat, M. (2019). Thermal conductivity and flammability of ulexite filled rigid polyurethane materials. Acta Physica Polonica A, 135(4), 825-828. https://doi.org/10.12693/APhysPolA.135.825
  • Karslıoğlu, A., Onur, M. İ., & Balaban, E. (2022). Investigation of boron waste usage in civil engineering applications. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 11(3), 727-735. https://doi.org/10.28948/ngmuh.1084831
  • Sokmen, N., & Buyukakinci, B. Y. (2018). The usage of boron/ boron compounds in the textile industry and its situation in Turkey. CBU International Conference on Innovations in Science and Education, 6, 1158-1165. https://doi.org/10.12955/cbup.v6.1309
  • Paciorek-Sadowska, J. (2012). Modification of purpır foams by boroorganic compound prepared on the basis of di(hydroxymethyl)urea. Journal of Porous Materials, 19(2), 161-171. https://doi.org/10.1007/s10934-011-9456-y
  • Yeler, O., Köseoğlu, M. F., Usta, N., & Demi̇ryuğuran, F. (2015). Rijit poliüretan köpük malzemelere bor oksit ilavesinin ısıl bozunma ve yanma özelliklerine etkilerinin incelenmesi. İleri Teknoloji Bilimleri Dergisi, 99, 34-39. Retrieved from https://dergipark.org.tr/en/pub/duzceitbd/issue/37903/365714
  • Zarzyka, I. (2016). Preparation and characterization of rigid polyurethane foams with carbamide and borate groups: rigid polyurethane foams with carbamide and borate groups. Polymer International, 65(12), 1430-1440. https://doi.org/10.1002/pi.5198
  • Li, O., Tamrakar, S., Iyigundogdu, Z., Mielewski, D., Wyss, K., Tour, J. M., & Kiziltas, A. (2023). Flexible polyurethane foams reinforced with graphene and boron nitride nanofillers. Polymer Composites, 44(3), 1494-1511. https://doi.org/10.1002/pc.27183
  • Montemayor, M. D., Vest, N. A., Palen, B., Smith, D. L., & Grunlan, J. C. (2024). Boron-containing polyelectrolyte complex for self-extinguishing polyurethane foam. ACS Applied Polymer Materials, 6(9), 5226-5234. https://doi.org/10.1021/acsapm.4c00400
  • Chmiel, E., Oliwa, R., & Lubczak, J. (2019). Boroncontaining non-flammable polyurethane foams. Polymer-Plastics Technology and Materials, 58(4), 394-404. https://doi.org/10.1080/03602559.2018.1471717
  • Xu, B., Zhao, S., Shan, H., Qian, L., Wang, J., & Xin, F. (2022). Effect of two boron compounds on smokesuppression and flame-retardant properties for rigid polyurethane foams. Polymer International, 71(10), 1210-1219. https://doi.org/10.1002/pi.6403
  • Tsuyumoto, I., Onoda, Y., Hashizume, F., & Kinpara, E. (2011). Flame-retardant rigid polyurethane foams prepared with amorphous sodium polyborate. Journal of Applied Polymer Science, 122(3), 1707-1711. https://doi.org/10.1002/app.34025
  • Dongmei, X., Xiu, L., Jie, F., & Jianwei, H. (2015). Preparation of boron-coated expandable graphite and its application in flame retardant rigid polyurethane foam. Chemical Research in Chinese Universities, 31(2), 315-320. https://doi.org/10.1007/s40242-015-4101-y
  • Akdogan, E., Erdem, M., Ureyen, M. E., & Kaya, M. (2020). Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame-retardant properties. Journal of Applied Polymer Science, 137(1), 47611. https://doi.org/10.1002/app.47611
  • Radzi, A. M., Sapuan, S. M., Jawaid, M., & Mansor, M. R. (2019). Water absorption, thickness swelling, and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 3988-3994. https://doi.org/10.1016/j.jmrt.2019.07.007
  • Taherishargh, M., Belova, I. V., Murch, G. E., & Fiedler, T. (2014). Low-density expanded perlitealuminium syntactic foam. Materials Science and Engineering: A, 604, 127-134. https://doi.org/10.1016/j.msea.2014.03.003
  • Uçar, N., Çalık, A., Emre, M., & Akkurt, I. (2021). Physical radiation shielding properties of concrete contains colemanite and ulexite. Indoor and Built Environment, 30(10), 1827-1834. https://doi.org/10.1177/1420326X20967974
  • Product Technical Data Sheet-Borax Decahydrate. (2023). [Online] Available: https://www.etimaden.gov.tr/storage/uploads/2018/01/10-2017-Borax_Deca_Powder.pdf
  • Product Technical Data Sheet- Borax Pentahydrate. (2023). [Online] Available: https://www.etimaden.gov.tr/storage/pages/March2023/TR-Etifert-B15.pdf
  • Soyer, Ş., Gürlek, G., & Kılıç, E. (2023). Valorization of leather industry waste in polyurethane composites for reduced flammability. Journal of Material Cycles and Waste Management, 25(1), 314-323. https://doi.org/10.1007/s10163-022-01533-3
  • Zhang, H., Fang, W.Z., Li, Y. M., & Tao, W.Q. (2017). Experimental study of the thermal conductivity of polyurethane foams. Applied Thermal Engineering, 115, 528-538. https://doi.org/10.1016/j.applthermaleng.2016.12.057
  • Irgat, M. S., & Yukselen-Aksoy, Y. (2019). Thermal conductivity behavior of boron added sand-bentonite mixtures. Proceedings of the XVII ECSMGE-2019, (Geotechnical Engineering, Foundation of the Future), Iceland, 4388-4393. https://doi.org/10.32075/17ECSMGE-2019-0911
  • Guerra, V., Wan, C., & McNally, T. (2019). Thermal conductivity of 2d nano-structured boron nitride (bn) and its composites with polymers. Progress in Materials Science, 100, 170-186. https://doi.org/10.1016/j.pmatsci.2018.10.002
  • Orhan, R., Aydoğmuş, E., Topuz, S., & Arslanoğlu, H. (2021). Investigation of thermo-mechanical characteristics of borax reinforced polyester composites. Journal of Building Engineering, 42, 103051. https://doi.org/10.1016/j.jobe.2021.103051
  • Abdulrahman, S. T., Ahmad, Z., Thomas, S., Maria, H. J., & Rahman, A. A. (2020). Viscoelastic and thermal properties of natural rubber low-density polyethylene composites with boric acid and borax. Journal of Applied Polymer Science, 137(44), 49372. https://doi.org/10.1002/app.49372
  • Łukasiewicz, B., & Lubczak, J. (2014). Polyurethane foams with purine ring and boron. Journal of Cellular Plastics, 50(4), 337-359. https://doi.org/10.1177/0021955X14525958
  • Kawagoe, M., Doi, Y., Fuwa, N., Yasuda, T., & Takata, K. (2001). Effects of absorbed water on the interfacial fracture between two layers of unsaturated polyester and glass. Journal of Materials Science, 36, 5161-5167. https://doi.org/10.1023/A:1012437626988
  • Bishay, I. K., Abd-El-Messieh, S. L., & Mansour, S. H. (2011). Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder. Materials & Design, 32(1), 62-68. https://doi.org/10.1016/j.matdes.2010.06.035
  • Kuru, D., Akpinar Borazan, A., & Guru, M. (2018). Effect of chicken feather and boron compounds as filler on mechanical and flame retardancy properties of polymer composite materials. Waste Management & Research, 36(11), 1029-1036. https://doi.org/10.1177/0734242X18804041
  • Seki, Y., Sever, K., Sarikanat, M., Sakarya, A., & Elik, E. (2013). Effect of huntite mineral on mechanical, thermal and morphological properties of polyester matrix. Composites Part B: Engineering, 45(1), 1534-1540. https://doi.org/10.1016/j.compositesb.2012.09.083
  • Yurtseven, R. (2019). Effects of ammonium polyphosphate/melamine additions on mechanical, thermal and burning properties of rigid polyurethane foams. Acta Physica Polonica A, 135(4), 775-777. https://doi.org/10.12693/APhysPolA.135.775
  • Bajwa, S. G., Bajwa, D. S., Holt, G., Coffelt, T., & Nakayama, F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 33(3), 747-755. https://doi.org/10.1016/j.indcrop.2011.01.017
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Research Makaleler
Yazarlar

Gökhan Gürlek 0000-0001-5324-1818

Lütfiye Altay 0000-0003-4946-3615

Proje Numarası Project no: 21768
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 16 Eylül 2024
Kabul Tarihi 30 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 4

Kaynak Göster

APA Gürlek, G., & Altay, L. (2024). Valorization of boron derivatives in polyurethane-based foams for reduced ignitability and thermal conductivity. Journal of Boron, 9(4), 163-172. https://doi.org/10.30728/boron.1551164