Derleme
BibTex RIS Kaynak Göster

A review on reactor design parameters of sodium borohydride (NaBH4) hydrolysis

Yıl 2025, Cilt: 10 Sayı: 2, 68 - 84, 30.06.2025
https://doi.org/10.30728/boron.1612416

Öz

Sodium borohydride (NaBH4) is a promising hydrogen storage medium, but its
practical implementation remains challenging. The aim of this study is to examine
the effect of critical parameters, to investigate the methods and techniques used in
the literature, and to provide information about the issues affecting the reactor design
of NaBH4 hydrolysis. In this way, it is expected that the study will contribute to the
commercialization of sodium borohydride and commercial product development efforts.
This study discusses the effects of various parameters, such as NaBH4 ratio, sodium
hydroxide (NaOH) ratio, fuel flow rate, temperature, and pressure. The manuscript
also introduces reactor designs, materials, separation, and purification methods.
Additionally, the study highlights challenges related to catalyst durability and the
transient behavior of the reactor.

Etik Beyan

There is no need for permission from the ethics committee for the article prepared

Kaynakça

  • [1] Yüksel, Y. E., & Öztürk, M. (2020). Thermodynamic analysis of a multigeneration energy system based geothermal energy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 113–121. https://doi.org/10.5505/pajes.2019.98411
  • [2] Nacar, S., Öncü, S., & Kayfeci, M. (2022). Induction heated metal hydride tube for hydrogen storage system. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(5), 676–680. https://doi.org/10.5505/pajes.2021.97692
  • [3] Long, B., Chen, J., Sharshir, S. W., Ibrahim, L., Zhou, W., Wang, C., … & Yuan, Z. (2024). The mechanism and challenges of cobalt-boron-based catalysts in the hydrolysis of sodium borohydride. Journal of Materials Chemistry A, 12, 5606–5625. https://doi.org/10.1039/d3ta07308d
  • [4] Wang, X., Liao, J., Li, H., Wang, H., Wang, R., Pollet, B.G., & Ji, S.(2018). Highly active porous Co–B nanoalloy synthesized on liquid-gas interface for hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 43(37), 17543–17555. https://doi.org/10.1016/J.IJHYDENE.2018.07.147
  • [5] Hoşgün, S., & Hoşgün, Z. (2024). Optimization of hydrogen generation rate with Co/MMT catalyst from NaBH4 using Box-Behnken method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 87–94. https://doi.org/10.5505/pajes.2023.34919
  • [6] Liu, B., Rose, A., Zhang, N., Hu, Y. Y., & Ma, M. (2017). Efficient co-nanocrystal-based catalyst for hydrogen generation from borohydride. Journal of Physical Chemistry C, 121(23), 12610–12616. https://doi.org/10.1021/ACS.JPCC.7B03094
  • [7] Yu, Y., Kang, L., Sun, L., Xu, F., Pan, H., Sang, Z., … & Li, B. (2022). Bimetallic Pt-Ni nanoparticles confined in porous titanium oxide cage for hydrogen generation from NaBH4 hydrolysis. Nanomaterials, 12(2550), 1–12. https://doi.org/10.3390/NANO12152550
  • [8] Shen, X., Wang, Q., Wu, Q., Guo, S., Zhang, Z., … & Li, B. (2015). CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution. Energy, 90, 464–474. https://doi.org/10.1016/J.ENERGY.2015.07.075
  • [9] Huff, C., Long, J. M., Heyman, A., & Abdel-Fattah, T. M. (2018). Palladium Nanoparticle multiwalled carbon nanotube composite as catalyst for hydrogen production by the hydrolysis of sodium borohydride. ACS Applied Energy Materials, 1(9), 4635–4640. https://doi.org/10.1021/ACSAEM.8B00748
  • [10] Arzac, G. M., Calvo, M. E., & Fernández, A. (2023). Understanding the problem of hydrogen storage using a demonstration: coupling a hydrogen generator based on the hydrolysis of sodium borohydride to a fuel-cell kit. Journal of Chemical Education, 100(11), 4554–4558. https://doi.org/10.1021/ACS.JCHEMED.3C00590
  • [11] Kaya, C. (2024). Sodium borohydride (NaBH4) as a maritime transportation fuel. Hydrogen, 5(3), 540–558. https://doi.org/10.3390/HYDROGEN5030030
  • [12] Demirci, U. B. (2023). Exploring the technological maturity of hydrogen production by hydrolysis of sodium borohydride. International Journal of Hydrogen Energy,. https://doi.org/10.1016/J.IJHYDENE.2023.04.176
  • [13] Lee, J. & Kim, T. (2014). Micro space power system using MEMS fuel cell for nano-satellites. Acta Astronautica, 101(1), 165–169. https://doi.org/10.1016/J.ACTAASTRO.2014.04.010
  • [14] Soon-mo, K., Shinuang, K., & Kim, T. (2019). Development of NaBH4-based hydrogen generator for fuel cell unmanned aerial vehicles with movable fuel cartridge. Energy Procedia, 158, 1930–1935. https://doi.org/10.1016/j.egypro.2019.01.443
  • [15] Kim, T., Shim, H., & Kwon, S. (2007). Micro aerial vehicle powered by a micro pem fuel cell and sodium borohydride hydrogen source. https://www.researchgate.net/publication/268412062
  • [16] Jung, E. S., Kim, H., Kwon, S., & Oh, T. H. (2018). Fuel cell system with sodium borohydride hydrogen generator for small unmanned aerial vehicles. International Journal of Green Energy, 15(6), 385–392. https://doi.org/10.1080/15435075.2018.1464924
  • [17] Kim, K., Kim, T., Lee, K., & Kwon, S. (2011). Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles. Journal of Power Sources, 196(21), 9069–9075. https://doi.org/10.1016/J.JPOWSOUR.2011.01.038
  • [18] Kim, T. (2014). NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell. Energy, 69, 721–727. https://doi.org/10.1016/J.ENERGY.2014.03.066
  • [19] Lapeña-Rey, N., Blanco, J.A., Ferreyra, E., Lemus, J. L., Pereira, S., & Serrot, E. (2017). A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions. International Journal of Hydrogen Energy, 42(10), 6926–6940. https://doi.org/10.1016/J.IJHYDENE.2017.01.137
  • [20] Erdör Türk, B., Sarul, M. H., Çengelci, E., İyigün Karadağ, Ç., Boyacı San, F. G., Kılıç, M., … & Yazici, S. (2021). Integrated process control-power management system design and flight performance tests for fuel cell powered mini-unmanned aerial vehicle. Energy Technology, 9(3), 1–12. https://doi.org/10.1002/ente.202000879
  • [21] Mohring, R. M., Eason, I. A., & Fennimore, K. A. (2002). Performance bench testing of automotive-scale hydrogen on DemandTM hydrogen generation technology. (SAE Technical Paper No. 2002‑01‑0098). In SAE 2002 World Congress & Exhibition, Detroit, MI. https://doi.org/10.4271/2002-01-0098
  • [22] Wang, F. C., & Fang, W. H. (2017). The development of a PEMFC hybrid power electric vehicle with automatic sodium borohydride hydrogen generation. International Journal of Hydrogen Energy, 42(15), 10376–10389. https://doi.org/10.1016/J.IJHYDENE.2017.03.040
  • [23] Muradov, N. (2016). An Energy-Dense Al-NaBH4-PEMFC based power generator for unmanned undersea vehicles. Florida Solar Energy Center. https://apps.dtic.mil/sti/pdfs/AD1007683.pdf
  • [24] Nunes, H. X., Ferreira, M. J. F., Rangel, C.M., & Pinto, A. M. F. R. (2016). Hydrogen generation and storage by aqueous sodium borohydride (NaBH4) hydrolysis for small portable fuel cells (H2 – PEMFC). International Journal of Hydrogen Energy, 41(34), 15426–15432. https://doi.org/10.1016/j.ijhydene.2016.06.173
  • [25] Jeong, S. U., Kim, R. K., Cho, E. A., Kim, H. J., Nam, S. W., Oh, I. H., … & Kim, S. H. (2005). A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. Journal of Power Sources, 144(1), 129–134. https://doi.org/10.1016/J.JPOWSOUR.2004.12.046
  • [26] Hsueh, C. L., Liu, C. H., Chen, B. H., Lee, M. S., Chen, C. Y., Lu, Y. W., … & Ku, J. R. (2011). A novel design of solid-state NaBH4 composite as a hydrogen source for 2 W PEMFC applications. Journal of Power Sources, 196(7), 3530–3538. https://doi.org/10.1016/J.JPOWSOUR.2010.12.058
  • [27] Ferreira, M. J. F., Fernandes, V. R., Rangel, C. M., Gales, L., & Pinto, A. M. F. R. (2009). Successive loadings of reactant in the hydrogen generation by hydrolysis of sodium borohydride in batch reactors. Journal of New Materials for Electrochemical Systems, 12, 153–159.
  • [28] A. M. F. R, P., Falcão, D. S., Silva, R. A., & Rangel, C. M. (2006). Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors. International Journal of Hydrogen Energy, 31, 341–347. https://doi.org/10.1016/j.ijhydene.2005.11.015
  • [29] Xia, Z. T., & Chan, S. H. (2005). Feasibility study of hydrogen generation from sodium borohydride solution for micro fuel cell applications. Journal of Power Sources, 152(1–2), 46–49. https://doi.org/10.1016/J.JPOWSOUR.2005.03.002
  • [30] Ferreira, M. J. F., Coelho, F., Rangel, C. M., & Pinto, A. M. F. R. (2012). Batch sodium borohydride hydrolysis systems: Effect of sudden valve opening on hydrogen generation rate. International Journal of Hydrogen Energy, 37(2), 1947–1953. https://doi.org/10.1016/J.IJHYDENE.2011.08.097
  • [31] Javed, U., & Subramanian, V. (2009). Hydrogen generation using a borohydride-based semi-continuous milli-scale reactor: Effects of physicochemical parameters on hydrogen yield. Energy & Fuels, 23, 408–413. https://doi.org/10.1021/ef8005417
  • [32] Arzac, G. M., Fernández, A., Justo, A., Sarmiento, B., Jiménez, M. A., & Jiménez, M. M. (2011). Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack. Journal of Power Sources, 196(9), 4388–4395. https://doi.org/10.1016/J.JPOWSOUR.2010.10.073
  • [33] Ley, M. B., Meggouh, M., Moury, R., Peinecke, K., & Felderhoff, M. (2015). Development of hydrogen storage tank systems based on complex metal hydrides. Materials, 8(9), 5891–5921. https://doi.org/10.3390/MA8095280
  • [34] Lee, J., Kong, K.Y., Jung, C.R., Cho, E., Yoon, S.P., Han, J., … & Nam, S. W. (2007). A structured Co–B catalyst for hydrogen extraction from NaBH4 solution. Catalysis Today, 120(3–4), 305–310. https://doi.org/10.1016/J.CATTOD.2006.09.019
  • [35] Oh, T. H., Gang, B. G., Kim, H., & Kwon, S. (2015). Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system. Energy, 90, 1163–1170. https://doi.org/10.1016/J.ENERGY.2015.06.055
  • [36] Oh, T. H., & Kwon, S. (2013). Performance evaluation of hydrogen generation system with electroless-deposited Co–P/Ni foam catalyst for NaBH4 hydrolysis. International Journal of Hydrogen Energy, 38(15), 6425–6435. https://doi.org/10.1016/J.IJHYDENE.2013.03.068
  • [37] Kim, J., & Kim, T. (2015). Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source. Applied Energy, 160, 945–953. https://doi.org/10.1016/J.APENERGY.2015.03.084
  • [38] Zhang, Y., Smith, G. M., & Wu, Y. (2007). Catalytic hydrolysis of sodium borohydride in an integrated reactor for hydrogen generation. International Journal of Hydrogen Energy, 32(18), 4731–4735. https://doi.org/10.1016/j.ijhydene.2007.08.017
  • [39] Sousa, T., Fernandes, V.R., Pinto, P. J. R., Slavkov, Y., Bosukov, L., & Rangel, C. M. (2012). A sodium borohydride hydrogen generation reactor for stationary applications: Experimental and reactor simulation studies. Chemical Engineering Science, 84, 70–79. https://doi.org/10.1016/J.CES.2012.08.001
  • [40] Kim, T., & Kwon, S. (2012). Design and development of a fuel cell-powered small unmanned aircraft. International Journal of Hydrogen Energy, 37(1), 615–622. https://doi.org/10.1016/J.IJHYDENE.2011.09.051
  • [41] Gang, B. G., Kim, H., & Kwon, S. (2017). Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles. Energy, 141, 1547–1554. https://doi.org/10.1016/J.ENERGY.2017.11.104
  • [42] Muir, S. S., & Yao, X. (2011). Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems. International Journal of Hydrogen Energy, 36(10), 5983–5997. https://doi.org/10.1016/J.IJHYDENE.2011.02.032
  • [43] Kojima, Y., Suzuki, K.I., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., & Matsumoto, S. (2004). Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources, 125(1), 22–26. https://doi.org/10.1016/S0378-7753(03)00827-9
  • [44] Richardson, B. S., Birdwell, J. F., Pin, F. G., Jansen, J. F., & Lind, R. F. (2005). Sodium borohydride based hybrid power system. Journal of Power Sources, 145(1), 21–29. https://doi.org/10.1016/J.JPOWSOUR.2004.12.057
  • [45] Zhang, Q., Smith, G., Wu, Y., & Mohring, R. (2006). Catalytic hydrolysis of sodium borohydride in an auto-thermal fixed-bed reactor. International Journal of Hydrogen Energy, 31(7), 961–965. https://doi.org/10.1016/J.IJHYDENE.2005.07.008
  • [46] Huang, Z. M., Su, A., Hsu, C. J., & Liu, Y. C. (2014). A high-efficiency, compact design of open-cathode type PEMFCs with a hydrogen generation system. Fuel, 122, 76–81. https://doi.org/10.1016/J.FUEL.2013.12.058
  • [47] Kim, T. (2012). Fully-integrated micro PEM fuel cell system with NaBH4 hydrogen generator. International Journal of Hydrogen Energy, 37(3), 2440–2446. https://doi.org/10.1016/J.IJHYDENE.2011.09.150
  • [48] Lee, J., & Kim, T. (2012). Micro PEM fuel cell system with NaBH4 hydrogen generator. Sensors and Actuators A: Physical, 177, 54–59. https://doi.org/10.1016/j.sna.2011.08.004
  • [49] Gang, B. G., & Kwon, S. (2018). All-in-one portable electric power plant using proton exchange membrane fuel cells for mobile applications. International Journal of Hydrogen Energy, 43(12), 6331–6339. https://doi.org/10.1016/J.IJHYDENE.2018.02.006
  • [50] Galli, S., De Francesco, M., Monteleone, G., Oronzio, R., & Pozio, A. (2010). Development of a compact hydrogen generator from sodium borohydride. International Journal of Hydrogen Energy, 35(14), 7344–7349. https://doi.org/10.1016/J.IJHYDENE.2010.03.144
  • [51] Gang, B. G. (2020). The Selective Zero Emission Power Systems Between NaBH4-Based Fuel Cells and Solar Cells for UAVs. International Journal of Aeronautical and Space Sciences, 21, 1017–1027. https://doi.org/10.1007/s42405-020-00260-z
  • [52] Okumus, E., Boyaci San, F. G., Okur, O., Turk, B. E., Cengelci, E., Kilic, M., … & Yazici, M. S. (2017). Development of boron-based hydrogen and fuel cell system for small unmanned aerial vehicle. International Journal of Hydrogen Energy, 42(4), 2691–2697. https://doi.org/10.1016/J.IJHYDENE.2016.09.009
  • [53] V Yartys, I Zavaliy, V. B., Pirskyy, Y., Manilevich, F., Kytsya, A., Verbovytskyy, Y., & Dubov, Y. (2023). Hydrogen generator integrated with fuel cell for portable energy supply. J. Phys. Energy, 5, 14014. https://doi.org/10.1088/2515-7655/acab2d
  • [54] Pozio, A., Francesco, M. D., Monteleone, G., Oronzio, R., Galli, S., D'Angelo, C., & Marrucci, M. (2008). Apparatus for the production of hydrogen from sodium borohydride in alkaline solution. International Journal of Hydrogen Energy, 33, 51–56. https://doi.org/10.1016/j.ijhydene.2007.08.024
  • [55] Kim, H., Oh, T. H., & Kwon, S. (2016). Simple catalyst bed sizing of a NaBH4 hydrogen generator with fast startup for small unmanned aerial vehicles. International Journal of Hydrogen Energy, 41(2), 1018–1026. https://doi.org/10.1016/J.IJHYDENE.2015.11.134
  • [56] Leu, J. H., Su, A., Sun, J. K., & Huang, Z. M. (2020). The catalyst loading effects on the feed rate of NaBH4 solution for the hydrogen production rate and conversion efficiency. Catalysts, 10(4), 451. https://doi.org/10.3390/CATAL10040451
  • [57] Zhang, J., Zheng, Y., Gore, J. P., & Fisher, T. S. (2007). 1 kWe sodium borohydride hydrogen generation system. Part I: Experimental study. Journal of Power Sources, 165(2), 844–853. https://doi.org/10.1016/J.JPOWSOUR.2006.12.055
  • [58] Gang, B. G., Jung, W., & Kwon, S. (2016). Transient behavior of proton exchange membrane fuel cells over a cobalt–phosphorous/nickel foam catalyst with sodium borohydride. International Journal of Hydrogen Energy, 41(1), 524–533. https://doi.org/10.1016/J.IJHYDENE.2015.11.064
  • [59] Chen, Y. H., & Lin, J. C. (2020). Reactant feeding strategy analysis of sodium borohydride hydrolysis reaction systems for ınstantaneous hydrogen generation. Energies, 13(4674). https://doi.org/10.3390/en13184674
  • [60] Kim, S. J., Lee, J., Kong, K. Y., Jung, C. R., Min, I. G., Lee, S. Y., … & Lim, T. H. (2007). Hydrogen generation system using sodium borohydride for operation of a 400 W-scale polymer electrolyte fuel cell stack. Journal of Power Sources, 170(2), 412–418. https://doi.org/10.1016/J.JPOWSOUR.2007.03.083
  • [61] Gervasio, D., Tasic, S., & Zenhausern, F. (2005). Room temperature micro-hydrogen-generator. Journal of Power Sources, 149(1–2), 15–21. https://doi.org/10.1016/J.JPOWSOUR.2005.01.054
  • [62] Ferreira, M. J. F., Coelho, F., Fernandes, V. R., Rangel, C. M. & Pinto & A. M. F. R. (2010). On-demand hydrogen generation by hydrolysis of sodium borohydride in batch reactors: effect of the buffer pressure. 3o Seminário Internacional Torres Vedras, 24-27. http://hdl.handle.net/10400.9/1127
  • [63] Li, H. Y., Chen, Y. T., Lu, M. T., Lai, Y. H., & Yang, J. T. (2014). Design and testing of a novel catalytic reactor to generate hydrogen. International Journal of Hydrogen Energy, 39(23), 11945–11954. https://doi.org/10.1016/J.IJHYDENE.2014.05.189
  • [64] Kim, J. H., Lee, J. Y., Choi, K. H., & Chang, H. (2008). Development of planar, air-breathing, proton exchange membrane fuel cell systems using stabilized sodium borohydride solution. Journal of Power Sources, 185(2), 881–885. https://doi.org/10.1016/J.JPOWSOUR.2008.08.102
  • [65] Hoeppner, K., Hoeppner, K., Hahn, R., Reichl, H., Esashi, M., & Tanaka, S. (2009). Fabrication and evaluation of a nabh4 hydrogen microreactor assembled by triple stack glass bonding. PowerMEMS 2009, 29–32.
  • [66] Kim, T. (2009). Micro reactor for hydrogen generation from sodium borohydride. PowerMEMS 2009, 33–36.
  • [67] M. J. F., F., C. M., R., & Pinto, A. M. F. R. (2012). Water handling challenge on hydrolysis of sodium borohydride in batch reactors. International Journal of Hydrogen Energy, 37(8), 6985–6994. https://doi.org/10.1016/j.ijhydene.2011.12.028
  • [68] Ferreira, M. J. F., Gales, L., Fernandes, V. R., Rangel, C. M., & Pinto, A. M. F. R. (2010). Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure. International Journal of Hydrogen Energy, 35(18), 9869–9878. https://doi.org/10.1016/J.IJHYDENE.2010.02.121
  • [69] Ferreira, M. J. F., Fernandes, V. R., Gales, L., Rangel, C. M., & Pinto, A. M. F. R. (2010). Effects of the addition of an organic polymer on the hydrolysis of sodium tetrahydroborate in batch reactors. International Journal of Hydrogen Energy, 35(20), 11456–11469. https://doi.org/10.1016/J.IJHYDENE.2010.07.079
  • [70] Gislon, P., Monteleone, G., & Prosini, P. P. (2009). Hydrogen production from solid sodium borohydride. International Journal of Hydrogen Energy, 34(2), 929–937. https://doi.org/10.1016/J.IJHYDENE.2008.09.105
  • [71] İskenderoğlu, F. C., Baltacıoğlu, M. K., Conker, Ç., & Bilgiç, H. H. (2022). An autonomous hydrogen production system design based on the solid chemical hydride. European Mechanical Science, 6(4), 213–220. https://doi.org/10.26701/ems.1056942
  • [72] Zakhvatkin, L., Zolotih, M., Maurice, Y., Schechter, A., & Avrahami, I. (2021). Hydrogen production on demand by a pump controlled hydrolysis of granulated sodium borohydride. Energy & Fuels, 35, 11507–11514. https://doi.org/10.1021/acs.energyfuels.1c00367
  • [73] İskenderoğlu, F. C., & Baltacıoğlu, M. K. (2022). Comparison of pure-hydrogen production performances of blast furnace slag, and metal powders in sodium borohydride hydrolysis reaction. European Mechanical Science, 6(3), 179–188. https://doi.org/10.26701/ems.1056917
  • [74] Li, S. C., & Wang, F. C. (2016). The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 41(4), 3038–3051. https://doi.org/10.1016/J.IJHYDENE.2015.12.019
  • [75] Han, M. K., Han, J. H., An, K. J., Jeon, D. S., Gervasio, D., Song, I., .. & Shul, Y. G. (2007). Study on a reactor design and catalyst for hydrogen generation from alkaline solution of sodium borohydride. Materials Science Forum, 539–543, 2295–2300. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.539-543.2295
  • [76] Zhu, L., Meng, D. D., Kroodsma, N., Yeom, J., & Shannon, M. A. (2009). An integrated microfluidic self-regulating and self-circulating hydrogen generator for fuel cells. TRANSDUCERS - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, 652–655. https://doi.org/10.1109/SENSOR.2009.5285409
  • [77] Zhu, L., Kroodsma, N., Yeom, J., Haan, J. L., Shannon, M. A., & Meng, D. D. (2011). An on-demand microfluidic hydrogen generator with self-regulated gas generation and self-circulated reactant exchange with a rechargeable reservoir. Microfluid Nanofluid, 11, 569–578. https://doi.org/10.1007/s10404-011-0822-5
  • [78] Xia, Z., Shen, Y., Wang, Y., Poh, C. K., & Lin, J. (2014). Development of a portable hydrogen generator with differential pressure-driven control. International Journal of Hydrogen Energy, 39(28), 16187–16194. https://doi.org/10.1016/J.IJHYDENE.2014.03.186
  • [79] Oronzio, R., Monteleone, G., Pozio, A., De Francesco, M., & Galli, S. (2009). New reactor design for catalytic sodium borohydride hydrolysis. International Journal of Hydrogen Energy, 34(10), 4555–4560. https://doi.org/10.1016/J.IJHYDENE.2009.01.056
  • [80] Aardahl, C. L. & Rassat, S. D. (2009). Overview of systems considerations for on-board chemical hydrogen storage. International Journal of Hydrogen Energy, 34(16), 6676–6683. https://doi.org/10.1016/J.IJHYDENE.2009.06.009
  • [81] Avrahami, I., Shvalb, N., Sasson, M., Nagar, Y., Dahan, O., Dayee, I., & Schechter, A. (2020). Hydrogen production on-demand by hydride salt and water two-phase generator. International Journal of Hydrogen Energy, 45(30), 15270–15280. https://doi.org/10.1016/J.IJHYDENE.2020.03.203
  • [82] Hayouk, E., Schechter, A., & Avrahami, I. (2024). A novel micro-reactor for hydrogen production from solid NaBH4 hydrolysis in a dual-cycle methodology. Heliyon, 10(4), e25744. https://doi.org/10.1016/J.HELIYON.2024.E25744
  • [83] Minkina, V. G., Shabunya, S. I., Kalinin, V. I., & Smirnova, A. (2016). Hydrogen generation from sodium borohydride solutions for stationary applications. International Journal of Hydrogen Energy, 41(22), 9227–9233. https://doi.org/10.1016/J.IJHYDENE.2016.03.063
  • [84] Xi, S., Wang, X., Wu, D., Hu, X., Zhou, S., & Yu, H. (2020). Efficient hydrogen generation from hydrolysis of sodium borohydride in seawater catalyzed by polyoxometalate supported on activated carbon. Frontiers in Chemistry, 8, 676. https://doi.org/10.3389/FCHEM.2020.00676/BIBTEX
  • [85] Aiello, R., Sharp, J. H., & Matthews, M. A. (1999). Production of hydrogen from chemical hydrides via hydrolysis with steam. International Journal of Hydrogen Energy, 24(12), 1123–1130. https://doi.org/10.1016/S0360-3199(99)00002-6
  • [86] Marrero-Alfonso, E. Y., Gray, J. R., Davis, T. A., & Matthews, M. A. (2007). Hydrolysis of sodium borohydride with steam. International Journal of Hydrogen Energy, 32(18), 4717–4722. https://doi.org/10.1016/J.IJHYDENE.2007.07.066
  • [87] Prosini, P. P., & Gislon, P. (2006). A hydrogen refill for cellular phone. Journal of Power Sources, 161(1), 290–293. https://doi.org/10.1016/J.JPOWSOUR.2006.03.072
  • [88] Murugesan, S., & Subramanian, V. (Ravi). (2009). Effects of acid accelerators on hydrogen generation from solid sodium borohydride using small scale devices. Journal of Power Sources, 187(1), 216–223. https://doi.org/10.1016/J.JPOWSOUR.2008.10.060
  • [89] Akdim, O., Demirci, U. B., & Miele, P. (2009). Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride. International Journal of Hydrogen Energy, 34(17), 7231–7238. https://doi.org/10.1016/J.IJHYDENE.2009.06.068
  • [90] Kwon, S. M., Kim, M.J., Kang, S. & Kim, T. (2019). Development of a high-storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles. Applied Energy, 251(113331). https://doi.org/10.1016/J.APENERGY.2019.113331
  • [91] Lee, C.J., & Kim, T. (2015). Hydrogen supply system employing direct decomposition of solid-state NaBH4. International Journal of Hydrogen Energy, 40(5), 2274–2282. https://doi.org/10.1016/J.IJHYDENE.2014.12.032
  • [92] Koh, J. S., Kim, D. H., Lee, S. H., & Kim, M. S. (2023). Hydrogen generation system for fuel cells based on high pressure hydrolysis of solid-state sodium borohydride. Energy Conversion and Management, 281(116850). https://doi.org/10.1016/J.ENCONMAN.2023.116850
  • [93] Kirk, J., Kim, Y., Lee, Y. J., Kim, M., Min, D. S., Kim, P. S., .. & Jeong, H. (2023). Pushing the limits of sodium borohydride hydrolysis for on-board hydrogen generation systems. Chemical Engineering Journal, 466(143233). https://doi.org/10.1016/J.CEJ.2023.143233
  • [94] Abdul-Majeed, W. S., Arslan, M. T., & Zimmerman, W. B. (2014). Application of acidic accelerator for production of pure hydrogen from NaBH 4. International Journal of Industrial Chemistry, 5, 15. https://doi.org/10.1007/s40090-014-0015-7
  • [95] Alibeyli, R. (2010). Production, hydrolysis and applications of sodium borohydride. Processes of Petrochemistry and Oil Refining, 11(4), 302–310.
  • [96] Lensing, D. (2020). A study on the integration of a novel NaBH4 fuelled hybrid system for a small inland vessel (Publication No. SDPO.20.005.m) [Master Thesis, Delft University of Technology]. TU Delft Repository. https://resolver.tudelft.nl/uuid:fa7d9b0b-e866-49a2-985c-4bded6f08c01
  • [97] Cento, C., Gislon, P., & Prosini, P. P. (2009). Hydrogen generation by hydrolysis of NaBH4. International Journal of Hydrogen Energy, 34(10), 4551–4554. https://doi.org/10.1016/J.IJHYDENE.2008.07.088
  • [98] Marchionni, A., Bevilacqua, M., Filippi, J., Folliero, M. G., Innocenti, M., Lavacchi, A., … & Vizza F. (2015). High volume hydrogen production from the hydrolysis of sodium borohydride using a cobalt catalyst supported on a honeycomb matrix. Journal of Power Sources, 299, 391–397. https://doi.org/10.1016/J.JPOWSOUR.2015.09.006
  • [99] Zhang, J., Zheng, Y., Gore, J. P., Mudawar, I., & Fisher, T. S. (2007). 1 kWe sodium borohydride hydrogen generation system: Part II: Reactor modeling. Journal of Power Sources, 170(1), 150–159. https://doi.org/10.1016/J.JPOWSOUR.2007.03.025
  • [100] Pinto, A. M. F. R., Ferreira, M. J. F., Fernandes, V. R., & Rangel, C. M. (2011). Durability and reutilization capabilities of a Ni-Ru catalyst for the hydrolysis of sodium borohydride in batch reactors. Catalysis Today, 170(1), 40–49. https://doi.org/10.1016/J.CATTOD.2011.03.051
  • [101] Fernandes, V. R., Esteves, A., Ferreira, M. J. F., Pinto, A. M. F. R., & Rangel, C. M. (2010). Generation of hydrogen from chemical hydrides under pressure up to 70 bar. 3o Seminário Internacional Torres Vedras, Hydrogen Energy and Sustainability-Advances in Fuel Cells and Hydrogen Workshop, Portugal. 60–62. http://hdl.handle.net/10400.9/1132
  • [102] Minkina, V. G., Shabunya, S. I., Kalinin, V. I., & Martynenko, V. V. (2022). Hydrogen generation from hydrolysis of concentrated NaBH4 solutions under adiabatic conditions. International Journal of Hydrogen Energy, 47(51), 21772–21781. https://doi.org/10.1016/J.IJHYDENE.2022.05.006
  • [103] Amendola, S. C., Sharp-Goldman, S. L., Saleem Janjua, M., Kelly, M. T., Petillo, P. J., & Binder, M. (2000). An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources, 85(2), 186–189. https://doi.org/10.1016/S0378-7753(99)00301-8
  • [104] Li, M., Deng, H., Zhang, Y., & Hou, C. (2021). A small hybrid power system of photovoltaic cell and sodium borohydride hydrolysis-based fuel cell. Micromachines, 12(3), 1–18. https://doi.org/10.3390/mi12030278
  • [105] Hoeppner, K., Hahn, R., Reichl, H., Esashi, M., & Tanaka, S. (2008). NaBH4 hydrogen microreactor fabricated by microsystem technology. https://www.researchgate.net/publication/266390991
  • [106] Groom, T. B. (2020). Development of Hydrogen-Based Portable Power Systems for Defense Applications [Doctoral dissertation, Purdue University]. https://doi.org/10.25394/PGS.12693356.v1
  • [107] Zou, Y. C., Huang, Y. M., Li, X., & Liu, H. L. (2011). A durable ruthenium catalyst for the NaBH4 hydrolysis. International Journal of Hydrogen Energy, 36, 4315–4322. https://doi.org/10.1016/j.ijhydene.2011.01.027
  • [108] Minkina, V. G., Shabunya, S. I. & Kalinin, V. I. (2015). Hydrogen generation and storage from sodium borohydride. Progress in Clean Energy, Novel Systems and Applications, 501–512. https://doi.org/10.1007/978-3-319-17031-2_36/FIGURES/7
  • [109] Hovland, V., Pesaran, A., Mohring, R. M., Eason, I. A., Smith, G. M., Tran, D., … & Smith, T. (2003). Water and Heat Balance in a Fuel Cell Vehicle with a Sodium Borohydride Hydrogen Fuel Processor. Journal of Engines, 112(3), 1805–1809. https://doi.org/10.4271/2003-01-2271
  • [110] Boran, A., Erkan, S., Ozkar, S., & Eroglu, I. (2013). Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor. International Journal of Energy Research, 37(5), 443–448. https://doi.org/10.1002/ER.3007
  • [111] Huang, Z. M., Su, A., & Liu, Y. C. (2013). Hydrogen generation with sodium borohydride solution by Ru catalyst. International Journal of Energy Research, 37, 1187–1195. https://doi.org/10.1002/er.2937
  • [112] Wu, C., Bai, Y., Liu, D. X., Wu, F., Pang, M. L., & Yi, B. L. (2011). Ni–Co–B catalyst-promoted hydrogen generation by hydrolyzing NaBH4 solution for in situ hydrogen supply of portable fuel cells. Catalysis Today, 170(1), 33–39. https://doi.org/10.1016/J.CATTOD.2011.01.046
  • [113] Netskina, O. V., Komova, O. V., & Simagina, V. I. (2016). Granulated rhodium catalysts of sodium borohydride hydrolysis for generators of high-purity hydrogen. Russian Journal of Applied Chemistry, 89(10), 1625–1631. https://doi.org/10.1134/S1070427216100104/METRICS
  • [114] Liang, Y., Wang, P. & Dai, H. Bin. (2010). Hydrogen bubbles dynamic template preparation of a porous Fe–Co–B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. Journal of Alloys and Compounds, 491(1–2), 359–365. https://doi.org/10.1016/J.JALLCOM.2009.10.183
  • [115] Dai, P., Zhao, X., Xu, D., Wang, C., Tao, X., Liu, X., & Gao, J. (2019). Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. International Journal of Hydrogen Energy, 44(53), 28463–28470. https://doi.org/10.1016/J.IJHYDENE.2019.02.013
  • [116] Hirata, K. T., Nobukazu, H. J., Haruna, .M. C., & Atsuhiro, .Y. K. (2014). Hydrolysis rate improvement in hydrogen generation system fueled by powdery sodium borohydride for fuel-cell vehicle. IEEE Transactions on Industry Applications. 50(4), 6687228 https://doi.org/10.1109/TIA.2013.2294994
  • [117] Chin, S. X., Vincent, J., Razak, N. F., Daud, N., Chowdhury, S., Wongchoosuk, C., & Chia, C. H. (2025). Advancements and challenges in sodium borohydride hydrogen storage: A comprehensive review of hydrolysis, regeneration, and recycling technologies. Journal of Renewable and Sustainable Energy, 17(1), 12702. https://doi.org/ 10.1063/5.0242699
  • [118] Ibrahim, A., Paskevicius, M., & Buckley, C. E. (2023). Chemical compression and transport of hydrogen using sodium borohydride. Sustainable Energy & Fuels, 7(1196). https://doi.org/10.1039/d2se01334g
  • [119] Tomoda, K., Aisaka, Y., Fukuzawa, T., Hoshi, N., Katayama, N., Yoshizaki, A., & Hirata, K. (2015). Verification of control method of multiple power converter to stabilize hydrogen supply from reactor fueled by sodium tetrahydroborate. 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 1327–1332. https://doi.org/10.1109/ECCE.2015.7309846
  • [120] Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602–627. https://doi.org/10.1016/J.ENCONMAN.2018.03.088
  • [121] Arzac, G. M., Hufschmidt, D., Jiménez De Haro, M. C., Fernández, A., Sarmiento, B., Jiménez, M.A., & Jimenez M. M. (2012). Deactivation, reactivation and memory effect on Co–B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen Energy, 37(19), 14373–14381. https://doi.org/10.1016/J.IJHYDENE.2012.06.117
  • [122] Demirci, U. B. (2018). About the technological readiness of the H2 generation by hydrolysis of B(-N)-H compounds. Energy Technology, 6, 470–486. https://doi.org/10.1002/ente.201700486
  • [123] Hung, A. J., Tsai, S. F., Hsu, Y. Y., Ku, J. R., Chen, Y. H., & Yu, C. C. (2008). Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation. International Journal of Hydrogen Energy, 33(21), 6205–6215. https://doi.org/10.1016/J.IJHYDENE.2008.07.109
  • [124] Sahiner, N., Ozay, O., Aktas, N., Inger, E., & He, J. (2011). The on demand generation of hydrogen from Co-Ni bimetallic nano catalyst prepared by dual use of hydrogel: As template and as reactor. International Journal of Hydrogen Energy, 36(23), 15250–15258. https://doi.org/10.1016/J.IJHYDENE.2011.08.082
  • [125] Kim, T. (2010). Hydrogen generation from sodium borohydride using microreactor for micro fuel cells. Internation Journal of Hydrogen Energy, 36, 1404–1410. https://doi.org/10.1016/j.ijhydene.2010.10.079
  • [126] Solovev, M. V., Malkov, G. V., Reveguk, A. A., Antonenko, A. O., Elets, D. I., Maystro, A. S., … & Kravchenko, O. V. (2024). Reaction of NaBH4 and NaB(OH)4 as a way to increase the yield of hydrogen in catalytic hydrolysis of sodium borohydride by water. Fuel, 363(130984). https://doi.org/10.1016/J.FUEL.2024.130984
  • [127] Kaya, C. (2024). Storage of hydrogen in sodium borohydride and its use with ammonia as triple fuel in diesel engines, (Publication No. 879465) [Doctoral dissertation, Yıldız Technical University].
  • [128] Van Rheenen, E. S., Padding, J. T., Slootweg, J. C., & Visser, K. (2023). A review of the potential of hydrogen carriers for zero emission, low signature ship propulsion systems. Preprint. https://doi.org/10.24868/10649
  • [129] Kilci, E. (2017). Experimental Study of Availability Study of Using of CO2 Coming from Exhaust in Hydrogen Production Technology of NaBH4 (Publication No. 476030) [Master Thesis, Yıldırım Beyazıt University].
  • [130] Coşkuner, Ö., A. Castilla-Martinez, C., Sonzogni, O., Petit, E., Demirci, U. B., & Kantürk Figen, A. (2022). Sodium borohydride hydrolysis-mediated hydrogenation of carbon dioxide, towards a two-step production of formic acid. International Journal of Hydrogen Energy, 47(62), 26490–26500. https://doi.org/10.1016/J.IJHYDENE.2021.12.236

Sodyum borhidrür (NaBH4) hidrolizinin reaktör tasarım parametreleri üzerine bir inceleme

Yıl 2025, Cilt: 10 Sayı: 2, 68 - 84, 30.06.2025
https://doi.org/10.30728/boron.1612416

Öz

Sodyum borhidrür (NaBH4) gelecek vaat eden bir hidrojen depolama aracıdır, ancak pratikte uygulanması halen daha zorlayıcıdır. Bu çalışmanın amacı, kritik parametrelerin etkisini incelemek, literatürde kullanılan yöntem ve teknikleri araştırmak ve NaBH4 hidrolizinin reaktör tasarımını etkileyen hususlar hakkında bilgi sağlamaktır. Bu sayede çalışmanın sodyum borhidrürün ticarileştirilmesi ve ticari ürün geliştirme çalışmalarına katkı sağlaması beklenmektedir. Bu çalışmada NaBH4 oranı, NaOH oranı, yakıt akış hızı, sıcaklık ve basınç gibi çeşitli parametrelerin etkileri tartışılmaktadır. Makalede ayrıca reaktör tasarımları, malzemeler, ayırma ve saflaştırma yöntemleri de tanıtılmaktadır. Ek olarak, çalışma katalizör dayanıklılığı ve reaktörün dinamik davranışıyla ilgili zorlukları vurgulamaktadır.

Kaynakça

  • [1] Yüksel, Y. E., & Öztürk, M. (2020). Thermodynamic analysis of a multigeneration energy system based geothermal energy. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 113–121. https://doi.org/10.5505/pajes.2019.98411
  • [2] Nacar, S., Öncü, S., & Kayfeci, M. (2022). Induction heated metal hydride tube for hydrogen storage system. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(5), 676–680. https://doi.org/10.5505/pajes.2021.97692
  • [3] Long, B., Chen, J., Sharshir, S. W., Ibrahim, L., Zhou, W., Wang, C., … & Yuan, Z. (2024). The mechanism and challenges of cobalt-boron-based catalysts in the hydrolysis of sodium borohydride. Journal of Materials Chemistry A, 12, 5606–5625. https://doi.org/10.1039/d3ta07308d
  • [4] Wang, X., Liao, J., Li, H., Wang, H., Wang, R., Pollet, B.G., & Ji, S.(2018). Highly active porous Co–B nanoalloy synthesized on liquid-gas interface for hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 43(37), 17543–17555. https://doi.org/10.1016/J.IJHYDENE.2018.07.147
  • [5] Hoşgün, S., & Hoşgün, Z. (2024). Optimization of hydrogen generation rate with Co/MMT catalyst from NaBH4 using Box-Behnken method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 87–94. https://doi.org/10.5505/pajes.2023.34919
  • [6] Liu, B., Rose, A., Zhang, N., Hu, Y. Y., & Ma, M. (2017). Efficient co-nanocrystal-based catalyst for hydrogen generation from borohydride. Journal of Physical Chemistry C, 121(23), 12610–12616. https://doi.org/10.1021/ACS.JPCC.7B03094
  • [7] Yu, Y., Kang, L., Sun, L., Xu, F., Pan, H., Sang, Z., … & Li, B. (2022). Bimetallic Pt-Ni nanoparticles confined in porous titanium oxide cage for hydrogen generation from NaBH4 hydrolysis. Nanomaterials, 12(2550), 1–12. https://doi.org/10.3390/NANO12152550
  • [8] Shen, X., Wang, Q., Wu, Q., Guo, S., Zhang, Z., … & Li, B. (2015). CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution. Energy, 90, 464–474. https://doi.org/10.1016/J.ENERGY.2015.07.075
  • [9] Huff, C., Long, J. M., Heyman, A., & Abdel-Fattah, T. M. (2018). Palladium Nanoparticle multiwalled carbon nanotube composite as catalyst for hydrogen production by the hydrolysis of sodium borohydride. ACS Applied Energy Materials, 1(9), 4635–4640. https://doi.org/10.1021/ACSAEM.8B00748
  • [10] Arzac, G. M., Calvo, M. E., & Fernández, A. (2023). Understanding the problem of hydrogen storage using a demonstration: coupling a hydrogen generator based on the hydrolysis of sodium borohydride to a fuel-cell kit. Journal of Chemical Education, 100(11), 4554–4558. https://doi.org/10.1021/ACS.JCHEMED.3C00590
  • [11] Kaya, C. (2024). Sodium borohydride (NaBH4) as a maritime transportation fuel. Hydrogen, 5(3), 540–558. https://doi.org/10.3390/HYDROGEN5030030
  • [12] Demirci, U. B. (2023). Exploring the technological maturity of hydrogen production by hydrolysis of sodium borohydride. International Journal of Hydrogen Energy,. https://doi.org/10.1016/J.IJHYDENE.2023.04.176
  • [13] Lee, J. & Kim, T. (2014). Micro space power system using MEMS fuel cell for nano-satellites. Acta Astronautica, 101(1), 165–169. https://doi.org/10.1016/J.ACTAASTRO.2014.04.010
  • [14] Soon-mo, K., Shinuang, K., & Kim, T. (2019). Development of NaBH4-based hydrogen generator for fuel cell unmanned aerial vehicles with movable fuel cartridge. Energy Procedia, 158, 1930–1935. https://doi.org/10.1016/j.egypro.2019.01.443
  • [15] Kim, T., Shim, H., & Kwon, S. (2007). Micro aerial vehicle powered by a micro pem fuel cell and sodium borohydride hydrogen source. https://www.researchgate.net/publication/268412062
  • [16] Jung, E. S., Kim, H., Kwon, S., & Oh, T. H. (2018). Fuel cell system with sodium borohydride hydrogen generator for small unmanned aerial vehicles. International Journal of Green Energy, 15(6), 385–392. https://doi.org/10.1080/15435075.2018.1464924
  • [17] Kim, K., Kim, T., Lee, K., & Kwon, S. (2011). Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles. Journal of Power Sources, 196(21), 9069–9075. https://doi.org/10.1016/J.JPOWSOUR.2011.01.038
  • [18] Kim, T. (2014). NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell. Energy, 69, 721–727. https://doi.org/10.1016/J.ENERGY.2014.03.066
  • [19] Lapeña-Rey, N., Blanco, J.A., Ferreyra, E., Lemus, J. L., Pereira, S., & Serrot, E. (2017). A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions. International Journal of Hydrogen Energy, 42(10), 6926–6940. https://doi.org/10.1016/J.IJHYDENE.2017.01.137
  • [20] Erdör Türk, B., Sarul, M. H., Çengelci, E., İyigün Karadağ, Ç., Boyacı San, F. G., Kılıç, M., … & Yazici, S. (2021). Integrated process control-power management system design and flight performance tests for fuel cell powered mini-unmanned aerial vehicle. Energy Technology, 9(3), 1–12. https://doi.org/10.1002/ente.202000879
  • [21] Mohring, R. M., Eason, I. A., & Fennimore, K. A. (2002). Performance bench testing of automotive-scale hydrogen on DemandTM hydrogen generation technology. (SAE Technical Paper No. 2002‑01‑0098). In SAE 2002 World Congress & Exhibition, Detroit, MI. https://doi.org/10.4271/2002-01-0098
  • [22] Wang, F. C., & Fang, W. H. (2017). The development of a PEMFC hybrid power electric vehicle with automatic sodium borohydride hydrogen generation. International Journal of Hydrogen Energy, 42(15), 10376–10389. https://doi.org/10.1016/J.IJHYDENE.2017.03.040
  • [23] Muradov, N. (2016). An Energy-Dense Al-NaBH4-PEMFC based power generator for unmanned undersea vehicles. Florida Solar Energy Center. https://apps.dtic.mil/sti/pdfs/AD1007683.pdf
  • [24] Nunes, H. X., Ferreira, M. J. F., Rangel, C.M., & Pinto, A. M. F. R. (2016). Hydrogen generation and storage by aqueous sodium borohydride (NaBH4) hydrolysis for small portable fuel cells (H2 – PEMFC). International Journal of Hydrogen Energy, 41(34), 15426–15432. https://doi.org/10.1016/j.ijhydene.2016.06.173
  • [25] Jeong, S. U., Kim, R. K., Cho, E. A., Kim, H. J., Nam, S. W., Oh, I. H., … & Kim, S. H. (2005). A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. Journal of Power Sources, 144(1), 129–134. https://doi.org/10.1016/J.JPOWSOUR.2004.12.046
  • [26] Hsueh, C. L., Liu, C. H., Chen, B. H., Lee, M. S., Chen, C. Y., Lu, Y. W., … & Ku, J. R. (2011). A novel design of solid-state NaBH4 composite as a hydrogen source for 2 W PEMFC applications. Journal of Power Sources, 196(7), 3530–3538. https://doi.org/10.1016/J.JPOWSOUR.2010.12.058
  • [27] Ferreira, M. J. F., Fernandes, V. R., Rangel, C. M., Gales, L., & Pinto, A. M. F. R. (2009). Successive loadings of reactant in the hydrogen generation by hydrolysis of sodium borohydride in batch reactors. Journal of New Materials for Electrochemical Systems, 12, 153–159.
  • [28] A. M. F. R, P., Falcão, D. S., Silva, R. A., & Rangel, C. M. (2006). Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors. International Journal of Hydrogen Energy, 31, 341–347. https://doi.org/10.1016/j.ijhydene.2005.11.015
  • [29] Xia, Z. T., & Chan, S. H. (2005). Feasibility study of hydrogen generation from sodium borohydride solution for micro fuel cell applications. Journal of Power Sources, 152(1–2), 46–49. https://doi.org/10.1016/J.JPOWSOUR.2005.03.002
  • [30] Ferreira, M. J. F., Coelho, F., Rangel, C. M., & Pinto, A. M. F. R. (2012). Batch sodium borohydride hydrolysis systems: Effect of sudden valve opening on hydrogen generation rate. International Journal of Hydrogen Energy, 37(2), 1947–1953. https://doi.org/10.1016/J.IJHYDENE.2011.08.097
  • [31] Javed, U., & Subramanian, V. (2009). Hydrogen generation using a borohydride-based semi-continuous milli-scale reactor: Effects of physicochemical parameters on hydrogen yield. Energy & Fuels, 23, 408–413. https://doi.org/10.1021/ef8005417
  • [32] Arzac, G. M., Fernández, A., Justo, A., Sarmiento, B., Jiménez, M. A., & Jiménez, M. M. (2011). Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack. Journal of Power Sources, 196(9), 4388–4395. https://doi.org/10.1016/J.JPOWSOUR.2010.10.073
  • [33] Ley, M. B., Meggouh, M., Moury, R., Peinecke, K., & Felderhoff, M. (2015). Development of hydrogen storage tank systems based on complex metal hydrides. Materials, 8(9), 5891–5921. https://doi.org/10.3390/MA8095280
  • [34] Lee, J., Kong, K.Y., Jung, C.R., Cho, E., Yoon, S.P., Han, J., … & Nam, S. W. (2007). A structured Co–B catalyst for hydrogen extraction from NaBH4 solution. Catalysis Today, 120(3–4), 305–310. https://doi.org/10.1016/J.CATTOD.2006.09.019
  • [35] Oh, T. H., Gang, B. G., Kim, H., & Kwon, S. (2015). Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system. Energy, 90, 1163–1170. https://doi.org/10.1016/J.ENERGY.2015.06.055
  • [36] Oh, T. H., & Kwon, S. (2013). Performance evaluation of hydrogen generation system with electroless-deposited Co–P/Ni foam catalyst for NaBH4 hydrolysis. International Journal of Hydrogen Energy, 38(15), 6425–6435. https://doi.org/10.1016/J.IJHYDENE.2013.03.068
  • [37] Kim, J., & Kim, T. (2015). Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source. Applied Energy, 160, 945–953. https://doi.org/10.1016/J.APENERGY.2015.03.084
  • [38] Zhang, Y., Smith, G. M., & Wu, Y. (2007). Catalytic hydrolysis of sodium borohydride in an integrated reactor for hydrogen generation. International Journal of Hydrogen Energy, 32(18), 4731–4735. https://doi.org/10.1016/j.ijhydene.2007.08.017
  • [39] Sousa, T., Fernandes, V.R., Pinto, P. J. R., Slavkov, Y., Bosukov, L., & Rangel, C. M. (2012). A sodium borohydride hydrogen generation reactor for stationary applications: Experimental and reactor simulation studies. Chemical Engineering Science, 84, 70–79. https://doi.org/10.1016/J.CES.2012.08.001
  • [40] Kim, T., & Kwon, S. (2012). Design and development of a fuel cell-powered small unmanned aircraft. International Journal of Hydrogen Energy, 37(1), 615–622. https://doi.org/10.1016/J.IJHYDENE.2011.09.051
  • [41] Gang, B. G., Kim, H., & Kwon, S. (2017). Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles. Energy, 141, 1547–1554. https://doi.org/10.1016/J.ENERGY.2017.11.104
  • [42] Muir, S. S., & Yao, X. (2011). Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems. International Journal of Hydrogen Energy, 36(10), 5983–5997. https://doi.org/10.1016/J.IJHYDENE.2011.02.032
  • [43] Kojima, Y., Suzuki, K.I., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., & Matsumoto, S. (2004). Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources, 125(1), 22–26. https://doi.org/10.1016/S0378-7753(03)00827-9
  • [44] Richardson, B. S., Birdwell, J. F., Pin, F. G., Jansen, J. F., & Lind, R. F. (2005). Sodium borohydride based hybrid power system. Journal of Power Sources, 145(1), 21–29. https://doi.org/10.1016/J.JPOWSOUR.2004.12.057
  • [45] Zhang, Q., Smith, G., Wu, Y., & Mohring, R. (2006). Catalytic hydrolysis of sodium borohydride in an auto-thermal fixed-bed reactor. International Journal of Hydrogen Energy, 31(7), 961–965. https://doi.org/10.1016/J.IJHYDENE.2005.07.008
  • [46] Huang, Z. M., Su, A., Hsu, C. J., & Liu, Y. C. (2014). A high-efficiency, compact design of open-cathode type PEMFCs with a hydrogen generation system. Fuel, 122, 76–81. https://doi.org/10.1016/J.FUEL.2013.12.058
  • [47] Kim, T. (2012). Fully-integrated micro PEM fuel cell system with NaBH4 hydrogen generator. International Journal of Hydrogen Energy, 37(3), 2440–2446. https://doi.org/10.1016/J.IJHYDENE.2011.09.150
  • [48] Lee, J., & Kim, T. (2012). Micro PEM fuel cell system with NaBH4 hydrogen generator. Sensors and Actuators A: Physical, 177, 54–59. https://doi.org/10.1016/j.sna.2011.08.004
  • [49] Gang, B. G., & Kwon, S. (2018). All-in-one portable electric power plant using proton exchange membrane fuel cells for mobile applications. International Journal of Hydrogen Energy, 43(12), 6331–6339. https://doi.org/10.1016/J.IJHYDENE.2018.02.006
  • [50] Galli, S., De Francesco, M., Monteleone, G., Oronzio, R., & Pozio, A. (2010). Development of a compact hydrogen generator from sodium borohydride. International Journal of Hydrogen Energy, 35(14), 7344–7349. https://doi.org/10.1016/J.IJHYDENE.2010.03.144
  • [51] Gang, B. G. (2020). The Selective Zero Emission Power Systems Between NaBH4-Based Fuel Cells and Solar Cells for UAVs. International Journal of Aeronautical and Space Sciences, 21, 1017–1027. https://doi.org/10.1007/s42405-020-00260-z
  • [52] Okumus, E., Boyaci San, F. G., Okur, O., Turk, B. E., Cengelci, E., Kilic, M., … & Yazici, M. S. (2017). Development of boron-based hydrogen and fuel cell system for small unmanned aerial vehicle. International Journal of Hydrogen Energy, 42(4), 2691–2697. https://doi.org/10.1016/J.IJHYDENE.2016.09.009
  • [53] V Yartys, I Zavaliy, V. B., Pirskyy, Y., Manilevich, F., Kytsya, A., Verbovytskyy, Y., & Dubov, Y. (2023). Hydrogen generator integrated with fuel cell for portable energy supply. J. Phys. Energy, 5, 14014. https://doi.org/10.1088/2515-7655/acab2d
  • [54] Pozio, A., Francesco, M. D., Monteleone, G., Oronzio, R., Galli, S., D'Angelo, C., & Marrucci, M. (2008). Apparatus for the production of hydrogen from sodium borohydride in alkaline solution. International Journal of Hydrogen Energy, 33, 51–56. https://doi.org/10.1016/j.ijhydene.2007.08.024
  • [55] Kim, H., Oh, T. H., & Kwon, S. (2016). Simple catalyst bed sizing of a NaBH4 hydrogen generator with fast startup for small unmanned aerial vehicles. International Journal of Hydrogen Energy, 41(2), 1018–1026. https://doi.org/10.1016/J.IJHYDENE.2015.11.134
  • [56] Leu, J. H., Su, A., Sun, J. K., & Huang, Z. M. (2020). The catalyst loading effects on the feed rate of NaBH4 solution for the hydrogen production rate and conversion efficiency. Catalysts, 10(4), 451. https://doi.org/10.3390/CATAL10040451
  • [57] Zhang, J., Zheng, Y., Gore, J. P., & Fisher, T. S. (2007). 1 kWe sodium borohydride hydrogen generation system. Part I: Experimental study. Journal of Power Sources, 165(2), 844–853. https://doi.org/10.1016/J.JPOWSOUR.2006.12.055
  • [58] Gang, B. G., Jung, W., & Kwon, S. (2016). Transient behavior of proton exchange membrane fuel cells over a cobalt–phosphorous/nickel foam catalyst with sodium borohydride. International Journal of Hydrogen Energy, 41(1), 524–533. https://doi.org/10.1016/J.IJHYDENE.2015.11.064
  • [59] Chen, Y. H., & Lin, J. C. (2020). Reactant feeding strategy analysis of sodium borohydride hydrolysis reaction systems for ınstantaneous hydrogen generation. Energies, 13(4674). https://doi.org/10.3390/en13184674
  • [60] Kim, S. J., Lee, J., Kong, K. Y., Jung, C. R., Min, I. G., Lee, S. Y., … & Lim, T. H. (2007). Hydrogen generation system using sodium borohydride for operation of a 400 W-scale polymer electrolyte fuel cell stack. Journal of Power Sources, 170(2), 412–418. https://doi.org/10.1016/J.JPOWSOUR.2007.03.083
  • [61] Gervasio, D., Tasic, S., & Zenhausern, F. (2005). Room temperature micro-hydrogen-generator. Journal of Power Sources, 149(1–2), 15–21. https://doi.org/10.1016/J.JPOWSOUR.2005.01.054
  • [62] Ferreira, M. J. F., Coelho, F., Fernandes, V. R., Rangel, C. M. & Pinto & A. M. F. R. (2010). On-demand hydrogen generation by hydrolysis of sodium borohydride in batch reactors: effect of the buffer pressure. 3o Seminário Internacional Torres Vedras, 24-27. http://hdl.handle.net/10400.9/1127
  • [63] Li, H. Y., Chen, Y. T., Lu, M. T., Lai, Y. H., & Yang, J. T. (2014). Design and testing of a novel catalytic reactor to generate hydrogen. International Journal of Hydrogen Energy, 39(23), 11945–11954. https://doi.org/10.1016/J.IJHYDENE.2014.05.189
  • [64] Kim, J. H., Lee, J. Y., Choi, K. H., & Chang, H. (2008). Development of planar, air-breathing, proton exchange membrane fuel cell systems using stabilized sodium borohydride solution. Journal of Power Sources, 185(2), 881–885. https://doi.org/10.1016/J.JPOWSOUR.2008.08.102
  • [65] Hoeppner, K., Hoeppner, K., Hahn, R., Reichl, H., Esashi, M., & Tanaka, S. (2009). Fabrication and evaluation of a nabh4 hydrogen microreactor assembled by triple stack glass bonding. PowerMEMS 2009, 29–32.
  • [66] Kim, T. (2009). Micro reactor for hydrogen generation from sodium borohydride. PowerMEMS 2009, 33–36.
  • [67] M. J. F., F., C. M., R., & Pinto, A. M. F. R. (2012). Water handling challenge on hydrolysis of sodium borohydride in batch reactors. International Journal of Hydrogen Energy, 37(8), 6985–6994. https://doi.org/10.1016/j.ijhydene.2011.12.028
  • [68] Ferreira, M. J. F., Gales, L., Fernandes, V. R., Rangel, C. M., & Pinto, A. M. F. R. (2010). Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure. International Journal of Hydrogen Energy, 35(18), 9869–9878. https://doi.org/10.1016/J.IJHYDENE.2010.02.121
  • [69] Ferreira, M. J. F., Fernandes, V. R., Gales, L., Rangel, C. M., & Pinto, A. M. F. R. (2010). Effects of the addition of an organic polymer on the hydrolysis of sodium tetrahydroborate in batch reactors. International Journal of Hydrogen Energy, 35(20), 11456–11469. https://doi.org/10.1016/J.IJHYDENE.2010.07.079
  • [70] Gislon, P., Monteleone, G., & Prosini, P. P. (2009). Hydrogen production from solid sodium borohydride. International Journal of Hydrogen Energy, 34(2), 929–937. https://doi.org/10.1016/J.IJHYDENE.2008.09.105
  • [71] İskenderoğlu, F. C., Baltacıoğlu, M. K., Conker, Ç., & Bilgiç, H. H. (2022). An autonomous hydrogen production system design based on the solid chemical hydride. European Mechanical Science, 6(4), 213–220. https://doi.org/10.26701/ems.1056942
  • [72] Zakhvatkin, L., Zolotih, M., Maurice, Y., Schechter, A., & Avrahami, I. (2021). Hydrogen production on demand by a pump controlled hydrolysis of granulated sodium borohydride. Energy & Fuels, 35, 11507–11514. https://doi.org/10.1021/acs.energyfuels.1c00367
  • [73] İskenderoğlu, F. C., & Baltacıoğlu, M. K. (2022). Comparison of pure-hydrogen production performances of blast furnace slag, and metal powders in sodium borohydride hydrolysis reaction. European Mechanical Science, 6(3), 179–188. https://doi.org/10.26701/ems.1056917
  • [74] Li, S. C., & Wang, F. C. (2016). The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 41(4), 3038–3051. https://doi.org/10.1016/J.IJHYDENE.2015.12.019
  • [75] Han, M. K., Han, J. H., An, K. J., Jeon, D. S., Gervasio, D., Song, I., .. & Shul, Y. G. (2007). Study on a reactor design and catalyst for hydrogen generation from alkaline solution of sodium borohydride. Materials Science Forum, 539–543, 2295–2300. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.539-543.2295
  • [76] Zhu, L., Meng, D. D., Kroodsma, N., Yeom, J., & Shannon, M. A. (2009). An integrated microfluidic self-regulating and self-circulating hydrogen generator for fuel cells. TRANSDUCERS - 15th International Conference on Solid-State Sensors, Actuators and Microsystems, 652–655. https://doi.org/10.1109/SENSOR.2009.5285409
  • [77] Zhu, L., Kroodsma, N., Yeom, J., Haan, J. L., Shannon, M. A., & Meng, D. D. (2011). An on-demand microfluidic hydrogen generator with self-regulated gas generation and self-circulated reactant exchange with a rechargeable reservoir. Microfluid Nanofluid, 11, 569–578. https://doi.org/10.1007/s10404-011-0822-5
  • [78] Xia, Z., Shen, Y., Wang, Y., Poh, C. K., & Lin, J. (2014). Development of a portable hydrogen generator with differential pressure-driven control. International Journal of Hydrogen Energy, 39(28), 16187–16194. https://doi.org/10.1016/J.IJHYDENE.2014.03.186
  • [79] Oronzio, R., Monteleone, G., Pozio, A., De Francesco, M., & Galli, S. (2009). New reactor design for catalytic sodium borohydride hydrolysis. International Journal of Hydrogen Energy, 34(10), 4555–4560. https://doi.org/10.1016/J.IJHYDENE.2009.01.056
  • [80] Aardahl, C. L. & Rassat, S. D. (2009). Overview of systems considerations for on-board chemical hydrogen storage. International Journal of Hydrogen Energy, 34(16), 6676–6683. https://doi.org/10.1016/J.IJHYDENE.2009.06.009
  • [81] Avrahami, I., Shvalb, N., Sasson, M., Nagar, Y., Dahan, O., Dayee, I., & Schechter, A. (2020). Hydrogen production on-demand by hydride salt and water two-phase generator. International Journal of Hydrogen Energy, 45(30), 15270–15280. https://doi.org/10.1016/J.IJHYDENE.2020.03.203
  • [82] Hayouk, E., Schechter, A., & Avrahami, I. (2024). A novel micro-reactor for hydrogen production from solid NaBH4 hydrolysis in a dual-cycle methodology. Heliyon, 10(4), e25744. https://doi.org/10.1016/J.HELIYON.2024.E25744
  • [83] Minkina, V. G., Shabunya, S. I., Kalinin, V. I., & Smirnova, A. (2016). Hydrogen generation from sodium borohydride solutions for stationary applications. International Journal of Hydrogen Energy, 41(22), 9227–9233. https://doi.org/10.1016/J.IJHYDENE.2016.03.063
  • [84] Xi, S., Wang, X., Wu, D., Hu, X., Zhou, S., & Yu, H. (2020). Efficient hydrogen generation from hydrolysis of sodium borohydride in seawater catalyzed by polyoxometalate supported on activated carbon. Frontiers in Chemistry, 8, 676. https://doi.org/10.3389/FCHEM.2020.00676/BIBTEX
  • [85] Aiello, R., Sharp, J. H., & Matthews, M. A. (1999). Production of hydrogen from chemical hydrides via hydrolysis with steam. International Journal of Hydrogen Energy, 24(12), 1123–1130. https://doi.org/10.1016/S0360-3199(99)00002-6
  • [86] Marrero-Alfonso, E. Y., Gray, J. R., Davis, T. A., & Matthews, M. A. (2007). Hydrolysis of sodium borohydride with steam. International Journal of Hydrogen Energy, 32(18), 4717–4722. https://doi.org/10.1016/J.IJHYDENE.2007.07.066
  • [87] Prosini, P. P., & Gislon, P. (2006). A hydrogen refill for cellular phone. Journal of Power Sources, 161(1), 290–293. https://doi.org/10.1016/J.JPOWSOUR.2006.03.072
  • [88] Murugesan, S., & Subramanian, V. (Ravi). (2009). Effects of acid accelerators on hydrogen generation from solid sodium borohydride using small scale devices. Journal of Power Sources, 187(1), 216–223. https://doi.org/10.1016/J.JPOWSOUR.2008.10.060
  • [89] Akdim, O., Demirci, U. B., & Miele, P. (2009). Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride. International Journal of Hydrogen Energy, 34(17), 7231–7238. https://doi.org/10.1016/J.IJHYDENE.2009.06.068
  • [90] Kwon, S. M., Kim, M.J., Kang, S. & Kim, T. (2019). Development of a high-storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles. Applied Energy, 251(113331). https://doi.org/10.1016/J.APENERGY.2019.113331
  • [91] Lee, C.J., & Kim, T. (2015). Hydrogen supply system employing direct decomposition of solid-state NaBH4. International Journal of Hydrogen Energy, 40(5), 2274–2282. https://doi.org/10.1016/J.IJHYDENE.2014.12.032
  • [92] Koh, J. S., Kim, D. H., Lee, S. H., & Kim, M. S. (2023). Hydrogen generation system for fuel cells based on high pressure hydrolysis of solid-state sodium borohydride. Energy Conversion and Management, 281(116850). https://doi.org/10.1016/J.ENCONMAN.2023.116850
  • [93] Kirk, J., Kim, Y., Lee, Y. J., Kim, M., Min, D. S., Kim, P. S., .. & Jeong, H. (2023). Pushing the limits of sodium borohydride hydrolysis for on-board hydrogen generation systems. Chemical Engineering Journal, 466(143233). https://doi.org/10.1016/J.CEJ.2023.143233
  • [94] Abdul-Majeed, W. S., Arslan, M. T., & Zimmerman, W. B. (2014). Application of acidic accelerator for production of pure hydrogen from NaBH 4. International Journal of Industrial Chemistry, 5, 15. https://doi.org/10.1007/s40090-014-0015-7
  • [95] Alibeyli, R. (2010). Production, hydrolysis and applications of sodium borohydride. Processes of Petrochemistry and Oil Refining, 11(4), 302–310.
  • [96] Lensing, D. (2020). A study on the integration of a novel NaBH4 fuelled hybrid system for a small inland vessel (Publication No. SDPO.20.005.m) [Master Thesis, Delft University of Technology]. TU Delft Repository. https://resolver.tudelft.nl/uuid:fa7d9b0b-e866-49a2-985c-4bded6f08c01
  • [97] Cento, C., Gislon, P., & Prosini, P. P. (2009). Hydrogen generation by hydrolysis of NaBH4. International Journal of Hydrogen Energy, 34(10), 4551–4554. https://doi.org/10.1016/J.IJHYDENE.2008.07.088
  • [98] Marchionni, A., Bevilacqua, M., Filippi, J., Folliero, M. G., Innocenti, M., Lavacchi, A., … & Vizza F. (2015). High volume hydrogen production from the hydrolysis of sodium borohydride using a cobalt catalyst supported on a honeycomb matrix. Journal of Power Sources, 299, 391–397. https://doi.org/10.1016/J.JPOWSOUR.2015.09.006
  • [99] Zhang, J., Zheng, Y., Gore, J. P., Mudawar, I., & Fisher, T. S. (2007). 1 kWe sodium borohydride hydrogen generation system: Part II: Reactor modeling. Journal of Power Sources, 170(1), 150–159. https://doi.org/10.1016/J.JPOWSOUR.2007.03.025
  • [100] Pinto, A. M. F. R., Ferreira, M. J. F., Fernandes, V. R., & Rangel, C. M. (2011). Durability and reutilization capabilities of a Ni-Ru catalyst for the hydrolysis of sodium borohydride in batch reactors. Catalysis Today, 170(1), 40–49. https://doi.org/10.1016/J.CATTOD.2011.03.051
  • [101] Fernandes, V. R., Esteves, A., Ferreira, M. J. F., Pinto, A. M. F. R., & Rangel, C. M. (2010). Generation of hydrogen from chemical hydrides under pressure up to 70 bar. 3o Seminário Internacional Torres Vedras, Hydrogen Energy and Sustainability-Advances in Fuel Cells and Hydrogen Workshop, Portugal. 60–62. http://hdl.handle.net/10400.9/1132
  • [102] Minkina, V. G., Shabunya, S. I., Kalinin, V. I., & Martynenko, V. V. (2022). Hydrogen generation from hydrolysis of concentrated NaBH4 solutions under adiabatic conditions. International Journal of Hydrogen Energy, 47(51), 21772–21781. https://doi.org/10.1016/J.IJHYDENE.2022.05.006
  • [103] Amendola, S. C., Sharp-Goldman, S. L., Saleem Janjua, M., Kelly, M. T., Petillo, P. J., & Binder, M. (2000). An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources, 85(2), 186–189. https://doi.org/10.1016/S0378-7753(99)00301-8
  • [104] Li, M., Deng, H., Zhang, Y., & Hou, C. (2021). A small hybrid power system of photovoltaic cell and sodium borohydride hydrolysis-based fuel cell. Micromachines, 12(3), 1–18. https://doi.org/10.3390/mi12030278
  • [105] Hoeppner, K., Hahn, R., Reichl, H., Esashi, M., & Tanaka, S. (2008). NaBH4 hydrogen microreactor fabricated by microsystem technology. https://www.researchgate.net/publication/266390991
  • [106] Groom, T. B. (2020). Development of Hydrogen-Based Portable Power Systems for Defense Applications [Doctoral dissertation, Purdue University]. https://doi.org/10.25394/PGS.12693356.v1
  • [107] Zou, Y. C., Huang, Y. M., Li, X., & Liu, H. L. (2011). A durable ruthenium catalyst for the NaBH4 hydrolysis. International Journal of Hydrogen Energy, 36, 4315–4322. https://doi.org/10.1016/j.ijhydene.2011.01.027
  • [108] Minkina, V. G., Shabunya, S. I. & Kalinin, V. I. (2015). Hydrogen generation and storage from sodium borohydride. Progress in Clean Energy, Novel Systems and Applications, 501–512. https://doi.org/10.1007/978-3-319-17031-2_36/FIGURES/7
  • [109] Hovland, V., Pesaran, A., Mohring, R. M., Eason, I. A., Smith, G. M., Tran, D., … & Smith, T. (2003). Water and Heat Balance in a Fuel Cell Vehicle with a Sodium Borohydride Hydrogen Fuel Processor. Journal of Engines, 112(3), 1805–1809. https://doi.org/10.4271/2003-01-2271
  • [110] Boran, A., Erkan, S., Ozkar, S., & Eroglu, I. (2013). Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor. International Journal of Energy Research, 37(5), 443–448. https://doi.org/10.1002/ER.3007
  • [111] Huang, Z. M., Su, A., & Liu, Y. C. (2013). Hydrogen generation with sodium borohydride solution by Ru catalyst. International Journal of Energy Research, 37, 1187–1195. https://doi.org/10.1002/er.2937
  • [112] Wu, C., Bai, Y., Liu, D. X., Wu, F., Pang, M. L., & Yi, B. L. (2011). Ni–Co–B catalyst-promoted hydrogen generation by hydrolyzing NaBH4 solution for in situ hydrogen supply of portable fuel cells. Catalysis Today, 170(1), 33–39. https://doi.org/10.1016/J.CATTOD.2011.01.046
  • [113] Netskina, O. V., Komova, O. V., & Simagina, V. I. (2016). Granulated rhodium catalysts of sodium borohydride hydrolysis for generators of high-purity hydrogen. Russian Journal of Applied Chemistry, 89(10), 1625–1631. https://doi.org/10.1134/S1070427216100104/METRICS
  • [114] Liang, Y., Wang, P. & Dai, H. Bin. (2010). Hydrogen bubbles dynamic template preparation of a porous Fe–Co–B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. Journal of Alloys and Compounds, 491(1–2), 359–365. https://doi.org/10.1016/J.JALLCOM.2009.10.183
  • [115] Dai, P., Zhao, X., Xu, D., Wang, C., Tao, X., Liu, X., & Gao, J. (2019). Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. International Journal of Hydrogen Energy, 44(53), 28463–28470. https://doi.org/10.1016/J.IJHYDENE.2019.02.013
  • [116] Hirata, K. T., Nobukazu, H. J., Haruna, .M. C., & Atsuhiro, .Y. K. (2014). Hydrolysis rate improvement in hydrogen generation system fueled by powdery sodium borohydride for fuel-cell vehicle. IEEE Transactions on Industry Applications. 50(4), 6687228 https://doi.org/10.1109/TIA.2013.2294994
  • [117] Chin, S. X., Vincent, J., Razak, N. F., Daud, N., Chowdhury, S., Wongchoosuk, C., & Chia, C. H. (2025). Advancements and challenges in sodium borohydride hydrogen storage: A comprehensive review of hydrolysis, regeneration, and recycling technologies. Journal of Renewable and Sustainable Energy, 17(1), 12702. https://doi.org/ 10.1063/5.0242699
  • [118] Ibrahim, A., Paskevicius, M., & Buckley, C. E. (2023). Chemical compression and transport of hydrogen using sodium borohydride. Sustainable Energy & Fuels, 7(1196). https://doi.org/10.1039/d2se01334g
  • [119] Tomoda, K., Aisaka, Y., Fukuzawa, T., Hoshi, N., Katayama, N., Yoshizaki, A., & Hirata, K. (2015). Verification of control method of multiple power converter to stabilize hydrogen supply from reactor fueled by sodium tetrahydroborate. 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 1327–1332. https://doi.org/10.1109/ECCE.2015.7309846
  • [120] Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., & Azad, A. K. (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 165, 602–627. https://doi.org/10.1016/J.ENCONMAN.2018.03.088
  • [121] Arzac, G. M., Hufschmidt, D., Jiménez De Haro, M. C., Fernández, A., Sarmiento, B., Jiménez, M.A., & Jimenez M. M. (2012). Deactivation, reactivation and memory effect on Co–B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen Energy, 37(19), 14373–14381. https://doi.org/10.1016/J.IJHYDENE.2012.06.117
  • [122] Demirci, U. B. (2018). About the technological readiness of the H2 generation by hydrolysis of B(-N)-H compounds. Energy Technology, 6, 470–486. https://doi.org/10.1002/ente.201700486
  • [123] Hung, A. J., Tsai, S. F., Hsu, Y. Y., Ku, J. R., Chen, Y. H., & Yu, C. C. (2008). Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation. International Journal of Hydrogen Energy, 33(21), 6205–6215. https://doi.org/10.1016/J.IJHYDENE.2008.07.109
  • [124] Sahiner, N., Ozay, O., Aktas, N., Inger, E., & He, J. (2011). The on demand generation of hydrogen from Co-Ni bimetallic nano catalyst prepared by dual use of hydrogel: As template and as reactor. International Journal of Hydrogen Energy, 36(23), 15250–15258. https://doi.org/10.1016/J.IJHYDENE.2011.08.082
  • [125] Kim, T. (2010). Hydrogen generation from sodium borohydride using microreactor for micro fuel cells. Internation Journal of Hydrogen Energy, 36, 1404–1410. https://doi.org/10.1016/j.ijhydene.2010.10.079
  • [126] Solovev, M. V., Malkov, G. V., Reveguk, A. A., Antonenko, A. O., Elets, D. I., Maystro, A. S., … & Kravchenko, O. V. (2024). Reaction of NaBH4 and NaB(OH)4 as a way to increase the yield of hydrogen in catalytic hydrolysis of sodium borohydride by water. Fuel, 363(130984). https://doi.org/10.1016/J.FUEL.2024.130984
  • [127] Kaya, C. (2024). Storage of hydrogen in sodium borohydride and its use with ammonia as triple fuel in diesel engines, (Publication No. 879465) [Doctoral dissertation, Yıldız Technical University].
  • [128] Van Rheenen, E. S., Padding, J. T., Slootweg, J. C., & Visser, K. (2023). A review of the potential of hydrogen carriers for zero emission, low signature ship propulsion systems. Preprint. https://doi.org/10.24868/10649
  • [129] Kilci, E. (2017). Experimental Study of Availability Study of Using of CO2 Coming from Exhaust in Hydrogen Production Technology of NaBH4 (Publication No. 476030) [Master Thesis, Yıldırım Beyazıt University].
  • [130] Coşkuner, Ö., A. Castilla-Martinez, C., Sonzogni, O., Petit, E., Demirci, U. B., & Kantürk Figen, A. (2022). Sodium borohydride hydrolysis-mediated hydrogenation of carbon dioxide, towards a two-step production of formic acid. International Journal of Hydrogen Energy, 47(62), 26490–26500. https://doi.org/10.1016/J.IJHYDENE.2021.12.236
Toplam 130 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnorganik Kimya (Diğer)
Bölüm Derleme Makaleleri
Yazarlar

Cenk Kaya 0000-0003-4470-5427

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 3 Ocak 2025
Kabul Tarihi 15 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 2

Kaynak Göster

APA Kaya, C. (2025). A review on reactor design parameters of sodium borohydride (NaBH4) hydrolysis. Journal of Boron, 10(2), 68-84. https://doi.org/10.30728/boron.1612416