Araştırma Makalesi
BibTex RIS Kaynak Göster

Rotavirus ile Mono- ya da Ko-Enfekte Buzağılarda Bağırsak Geçirgenliğinin Bir Adım Öncesinde Serum Zonulin Seviyeleri ile Dışkı Skorlarının Yansımaları

Yıl 2025, Cilt: 6 Sayı: 1, 16 - 21, 30.06.2025
https://doi.org/10.58833/bozokvetsci.1642162

Öz

Rotavirus kaynaklı ishallerde artmış olan intestinal permeabilite olası mekanizmalardan birisi olarak gösterilmektedir. Buna karşın karşıt görüş ile insan ve fare modellemelerinde, rotavirusların oluşagelen ishalin seyri esnasında intestinal permabiliteyi etkilemediği ya da azalttığı da bahis edilmektedir. Bu çalışmada özel bir buzağı işletmesinde rotavirus ile mono-infekte 10 ishalli (3 erkek, 7 dişi; 1-17 günlük), rotavirus ile diğer etmenlerle ko-enfekte 8 buzağı (2-24 günlük, 4 dişi, 4 erkek) ve diğer 7 sağlıklı (1-18 günlük; 5 dişi, 2 erkek olmak üzere toplamda 25 buzağıda bağırsak geçirgenliğinin araştırılması amaçlandı. Dışkı kıvamı 3’lü puantaj sistemi dahilinde değerlendirildiğinde mono-enfekte grupta 1-3 arası, ko-enfekte grupta 2 ile 3 bandında değişim tespit edildi Gizli temizlik skorları açısından yapılan değerlendirmede mono-infekte grupta 1 ila 2, ko-infekte grupta 2 ila 3 arasında skorlar değişmekte idi. Serum zonulin seviyeleri (ng/mL) ortalama±standart hata gösterildiği üzere rotavirus ile mono-infekte buzağılarda 41.59±6.41, ko-infekte buzağılarda 61.61±12.42 olarak belirlenirken, kontrol grubuna) 19.25±6.41 göre anlamlı farklar istatistiksel olarak belirgin şekilde (p<0.05) görüldü. Sonuç olarak rotavirus ile gerek mono-infekte gerekse ko-infekte buzağılarda muhtemel intestinal permabilite artışına eşlik eden geçirgen bağırsak sendromunun varlığı gerek teşhise yönelik biyobelirteç havuzuna katkı sağlayabilir, gerekse sağaltım protokollerinde değişime neden olabilir.

Kaynakça

  • 1. Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirüs infection. Infection and Drug Resistance, 2017; 3: 17083.
  • 2. Hagbom M, Sharma S, Lundgren O, Svensson L. Towards a human rotavirüs disease model. Infection and Drug Resistance, 2012; 2(4): 408-18.
  • 3. Svensson D, Desselberger U, Estes MK, Greenberg HB, editors. Viral gastroenteritis: molecular epidemiology and pathogenesis. London, UK: Elsevier; 2016.
  • 4. Johansen K, Stintzing G, Magnusson KE, Sundqvist T, Jalil F, Murtaza A, et al. Intestinal permeability assessed with polyethylene glycols in children with diarrhea due to rotavirüs and common bacterial pathogens in a developing community. Journal of Pediatric Gastroenterology and Nutrition, 1989; 9(3): 307-313.
  • 5. Serrander R, Magnusson KE, Sundqvist T. Acute infections with Giardia lamblia and rotavirüs decrease intestinal permeability to low-molecular weight polyethylene glycols (PEG 400). Scandinavian Journal of Infectious Diseases 16(4) (1984): 339-344.
  • 6. Stintzing G, Johansen K, Magnusson KE, Svensson L, Sundqvist T. Intestinal permeability in small children during and after rotavirüs diarrhoea assessed with different-size polyethylene glycols (PEG 400 and PEG 1000). Acta Paediatrica Scandinavica, 1986; 75(6): 1005-1009.
  • 7. Istrate C, Hagbom M, Vikstrom E, Magnusson KE, Svensson L. Rotavirüs infection increases intestinal motility but not permeability at the onset of diarrhea. Journal of Virology, 2014; 88(6): 3161-3169.
  • 8. Lahesmaa-Rantala R, Magnusson KE, Granfors K, Leino R, Sundqvist T, Toivanen A. Intestinal permeability in patients with yersinia-triggered reactive arthritis. Annals of the Rheumatic Diseases, 1991; 50(2): 91-94.
  • 9. Serrander R, Magnusson KE, Kihlstrom E, Sundqvist T. Acute Yersinia infections in man increase intestinal permeability for low-molecular weight polyethylene glycols (PEG 400). Scandinavian Journal of Infectious Diseases, 1986; 18(4): 409-413.
  • 10. USDA. Dairy 2007 Part II: Changes in the U.S. Dairy Cattle Industry, 1991-2007. Fort Collins: USDA-APHIS-VS, CEAH; 2008. p. 57-61.
  • 11. Roblin M, Canniere E, Barbier A, Daandels Y, Dellevoet-Groenewegen M, Pinto P, Tsaousis A, Leruste H, Brainard J, Hunter PR, Follet J, Study of the economic impact of cryptosporidiosis in calves after implementing good practices to manage the disease on dairy farms in Belgium, France, and the Netherlands, Current Research in Parasitology & Vector-Borne Diseases, 2023; 4:1-7.
  • 12. Juan RV, Ramiro G-A, Rafael A-C, Blanca PR, Alondra RR. Economic impact of mortality and morbidity from diseases in dairy calves 2019; 9:1-7.Bartels CJ, Holzhauer M, Jorritsma R, Swart WA, Lam TJ. Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves. Infection and Drug Resistance, 2010; 93(2-3): 162-9.
  • 13. Izzo MM, Kirkland PD, Mohler VL, Perkins NR, Gunn AA, House JK. Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea. Infection and Drug Resistance, 2011; 89(5): 167-73.
  • 14. Fenner F, MacLachlan NJ, Dubovi EJ, editors. Fenner's Veterinary Virology. 4th ed. Burlington: Academic Press; 2011. p. 288-90.
  • 15. Steele AD, Geyer A, Gerdes GH. Rotavirüs infections. In: Coetzer JAW, Tustin RC, editors. Infectious Diseases of Livestock. 2nd ed. Cape Town: Oxford University Press Southern Africa; 2004. p. 1256-64.
  • 16. Ghosh S, Varghese V, Sinha M, Kobayashi N, Naik TN, et al. Evidence for interstate transmission and increase in prevalence of bovine group B rotavirüs strains with a novel VP7 genotype among diarrhoeic calves in Eastern and Northern states of India. Epidemiology and Infection, 2007; 135(8): 1324-1330.
  • 17. Tsunemitsu H, Jiang B, Saif LJ. Detection of group C rotavirüs antigens and antibodies in animals and humans by enzyme-linked immunosorbent assays. Journal of Clinical Microbiology, 1992; 30(9): 2129-2134.
  • 18. Dhama K, Chauhan RS, Mahendran M, Malik SV. Rotavirüs diarrhea in bovines and other domestic animals. Veterinary Research Communications, 2009; 33(1): 1-23.
  • 19. Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M. Zoonotic aspects of rotavirüses. Veterinary Microbiology, 2010; 140(3-4): 246-255.
  • 20. Alıç Ural D, Ural K. Zonulin as a preliminary biomarker of lung permeability among diseased calves: Cohort study. Egyptian Journal of Veterinary Sciences, 2023; 54(4): 601-607.
  • 21. Alıç Ural D, Erdoğan S, Erdoğan H, Ural K. Heat stress, intestinal barrier disruption, and calves: multidisciplinary perspective field study. Journal of Advanced Veterinary and Biomedical Sciences and Technologies, 2021; 6(3): 265-269.
  • 22. Alıç Ural D, Ural K, Erdoğan H, Erdoğan S. Alterations in gut integrity due to heat stress among dairy cattle of Aydin city: analytical interpretation of zonulin levels within repetitive measurements. International Journal of: 10.34188/ijvar.2021.4.3.111.
  • 23. Alıç Ural D. Heat Stress and Seasonal Dissipation of Circulating Zonulin Levels Among Calves in Aydın Region. International Journal of Veterinary and Animal Research, 2022; 5(2): 47-49.
  • 24. Alıç Ural D. Serum Zonulin Levels and Fecal Scoring as Probable Early Predictor of Intestinal Inflammation Among Calves with Diarrhea: Cohort Study. Turkiye Klinikleri Journal of Veterinary Sciences, 2023; 14(1): 18-21.
  • 25. Alıç Ural D. Zonulin as a noninvasive selected biomarker of gut barrier function identify and debug calves suffering from diarrhea. International Journal of Veterinary and Animal Research, 2022; 5(3): 159-161.
  • 26. Alıç Ural D. Leaky gut and Giardia duodenalis infection associated serum zonulin levels among calves: randomized clinical study. Turkiye Klinikleri Journal of Veterinary Sciences, 2022; 13(2): 1-5.
  • 27. McGuirk SM. Disease management of dairy calves and heifers. Veterinary Clinics of North America: Food Animal Practice, 2008; 24(1): 139-153.
  • 28. Panivivat R, Kegley EB, Pennington JA, Kellogg DW, Krumpelman SL. Growth performance and health of dairy calves bedded with different types of materials. Journal of Dairy Science, 2004; 87(11): 3736-3745.
  • 29. Sutherland MA, Worth GM, Stewart M. The effect of rearing substrate and space allowance on the behavior and physiology of dairy calves. Journal of Dairy Science, 2014; 97(7): 4455-4463.
  • 30. Forget P, Sodoyez-Goffaux F, Zappitelli A. Permeability of the small intestine to (⁵¹Cr) EDTA in children with acute gastroenteritis or eczema. Journal of Pediatric Gastroenterology and Nutrition, 1985; 4(3): 393-396.
  • 31. Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview. Gastroenterology, 1995; 108(5): 1566-1581.
  • 32. Davin JC, Forget P, Mahieu PR. Increased intestinal permeability to (⁵¹Cr) EDTA is correlated with IgA immune complex-plasma levels in children with IgA-associated nephropathies. Acta Paediatrica Scandinavica, 1988; 77(1): 118-124.
  • 33. Ford RP, Menzies IS, Phillips AD, Walker-Smith JA, Turner MW. Intestinal sugar permeability: relationship to diarrhoeal disease and small bowel morphology. Journal of Pediatric Gastroenterology and Nutrition, 1985; 4(4): 568-574.
  • 34. Cook GC, Menzies IS. Intestinal absorption and unmediated permeation of sugars in post-infective tropical malabsorption (tropical sprue). Digestion, 1986; 33(2): 109-116.
  • 35. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiological Reviews, 2011; 91(1): 151-175.
  • 36. Odenwald MA, Turner JR. Intestinal permeability defects: is it time to treat? Clinical Gastroenterology and Hepatology, 2013; 11(9): 1075-1083.
  • 37. Ajamian M, Steer D, Rosella G, Gibson PR. Serum zonulin as a marker of intestinal mucosal barrier function: may not be what it seems. PLoS One, 2019; 14(1): e0210728.
  • 38. Mani V, Weber TE, Baumgard LH, Gabler NK. Growth and development symposium: endotoxin, inflammation, and intestinal function in livestock. Journal of Animal Science, 2012; 90(5): 1452-1465.
  • 39. Baumgard LH, Rhoads RP Jr. Effects of heat stress on postabsorptive metabolism and energetics. Annual Review of Animal Biosciences, 2013; 1: 311-337.
  • 40. Pearce SC, Mani V, Weber TE, Rhoads RP, Patience JF, Baumgard LH, et al. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. Journal of Animal Science, 2013; 91(11): 5183-5193.
  • 41. Emmanuel DG, Madsen KL, Churchill TA, Dunn SM, Ametaj BN. Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues. Journal of Dairy Science, 2007; 90(12): 5552-5557.
  • 42. Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009; 92(3): 1060-1070.
  • 43. Minuti A, Ahmed S, Trevisi E, Piccioli-Cappelli F, Bertoni G, Jahan N, et al. Experimental acute rumen acidosis in sheep: consequences on clinical, rumen, and gastrointestinal permeability conditions and blood chemistry. Journal of Animal Science, 2014; 92(9): 3966-3977.
  • 44. Moeser AJ, Klok CV, Ryan KA, Wooten JG, Little D, Cook VL, et al. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2007; 292(1): G173-G181.
  • 45. Kvidera SK, Horst EA, Abuajamieh M, Mayorga EJ, Fernandez MV, Baumgard LH. Glucose requirements of an activated immune system in lactating Holstein cows. Journal of Dairy Science, 2017; 100(3): 2360-2374.
  • 46. Wood KM, Palmer SI, Steele MA, Metcalf JA, Penner GB. The influence of age and weaning on permeability of the gastrointestinal tract in Holstein bull calves. Journal of Dairy Science, 2015; 98(10): 7226-7237.
  • 47. Zhang S, Albornoz RI, Aschenbach JR, Barreda DR, Penner GB. Short-term feed restriction impairs the absorptive function of the reticulo-rumen and total tract barrier function in beef cattle. Journal of Animal Science, 2013; 91(4): 1685-1695.
  • 48. Abuajamieh M, Kvidera SK, Fernandez MV, Nayeri A, Upah NC, Nolan EA, et al. Inflammatory biomarkers are associated with ketosis in periparturient Holstein cows. Research in Veterinary Science, 2016; 109: 81-85.
  • 49. Araujo G, Yunta C, Terré M, Mereu A, Ipharraguerre I, Bach A. Intestinal permeability and incidence of diarrhea in newborn calves. Journal of Dairy Science, 2015; 98(10): 7309-7317.

Reflection of Serum Zonulin Levels and Fecal Scores One Step Before Intestinal Permeability in Calves Mono- or Co-Infected with Rotavirus

Yıl 2025, Cilt: 6 Sayı: 1, 16 - 21, 30.06.2025
https://doi.org/10.58833/bozokvetsci.1642162

Öz

Increased intestinal permeability in rotavirus-induced diarrhea is shown as one of the possible mechanisms. However, it is also claimed by the opposing view that rotaviruses do not affect or reduce intestinal permeability during the course of diarrhea in human and mouse models. In this study, it was aimed to investigate intestinal permeability in a total of 25 calves, 10 with diarrhea (3 males, 7 females; 1-17 days old) mono-infected with rotavirus, 8 calves (2-24 days old, 4 females, 4 males) co-infected with rotavirus and other agents and 7 other healthy (1-18 days old; 5 females, 2 males) in a private calf farm. When stool consistency was evaluated within the 3-point scoring system, changes were detected between 1-3 in the mono-infected group and between 2 and 3 in the co-infected group. In the evaluation made in terms of latent cleanliness scores, the scores varied between 1 and 2 in the mono-infected group and between 2 and 3 in the co-infected group. Serum zonulin levels (ng/mL) were 41.59±6.41 in rotavirus mono-infected calves and 41.59±6.41 in co-infected calves as shown in the mean±standard error. 61.61±12.42, while it was determined as 19.25±6.41 compared to the control group, statistically significant differences were observed (p<0.05). As a result, the presence of leaky gut syndrome accompanied by a possible increase in intestinal permeability in both mono-infected and co-infected calves with rotavirus may contribute to the biomarker pool for diagnosis and may cause changes in treatment protocols.

Kaynakça

  • 1. Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirüs infection. Infection and Drug Resistance, 2017; 3: 17083.
  • 2. Hagbom M, Sharma S, Lundgren O, Svensson L. Towards a human rotavirüs disease model. Infection and Drug Resistance, 2012; 2(4): 408-18.
  • 3. Svensson D, Desselberger U, Estes MK, Greenberg HB, editors. Viral gastroenteritis: molecular epidemiology and pathogenesis. London, UK: Elsevier; 2016.
  • 4. Johansen K, Stintzing G, Magnusson KE, Sundqvist T, Jalil F, Murtaza A, et al. Intestinal permeability assessed with polyethylene glycols in children with diarrhea due to rotavirüs and common bacterial pathogens in a developing community. Journal of Pediatric Gastroenterology and Nutrition, 1989; 9(3): 307-313.
  • 5. Serrander R, Magnusson KE, Sundqvist T. Acute infections with Giardia lamblia and rotavirüs decrease intestinal permeability to low-molecular weight polyethylene glycols (PEG 400). Scandinavian Journal of Infectious Diseases 16(4) (1984): 339-344.
  • 6. Stintzing G, Johansen K, Magnusson KE, Svensson L, Sundqvist T. Intestinal permeability in small children during and after rotavirüs diarrhoea assessed with different-size polyethylene glycols (PEG 400 and PEG 1000). Acta Paediatrica Scandinavica, 1986; 75(6): 1005-1009.
  • 7. Istrate C, Hagbom M, Vikstrom E, Magnusson KE, Svensson L. Rotavirüs infection increases intestinal motility but not permeability at the onset of diarrhea. Journal of Virology, 2014; 88(6): 3161-3169.
  • 8. Lahesmaa-Rantala R, Magnusson KE, Granfors K, Leino R, Sundqvist T, Toivanen A. Intestinal permeability in patients with yersinia-triggered reactive arthritis. Annals of the Rheumatic Diseases, 1991; 50(2): 91-94.
  • 9. Serrander R, Magnusson KE, Kihlstrom E, Sundqvist T. Acute Yersinia infections in man increase intestinal permeability for low-molecular weight polyethylene glycols (PEG 400). Scandinavian Journal of Infectious Diseases, 1986; 18(4): 409-413.
  • 10. USDA. Dairy 2007 Part II: Changes in the U.S. Dairy Cattle Industry, 1991-2007. Fort Collins: USDA-APHIS-VS, CEAH; 2008. p. 57-61.
  • 11. Roblin M, Canniere E, Barbier A, Daandels Y, Dellevoet-Groenewegen M, Pinto P, Tsaousis A, Leruste H, Brainard J, Hunter PR, Follet J, Study of the economic impact of cryptosporidiosis in calves after implementing good practices to manage the disease on dairy farms in Belgium, France, and the Netherlands, Current Research in Parasitology & Vector-Borne Diseases, 2023; 4:1-7.
  • 12. Juan RV, Ramiro G-A, Rafael A-C, Blanca PR, Alondra RR. Economic impact of mortality and morbidity from diseases in dairy calves 2019; 9:1-7.Bartels CJ, Holzhauer M, Jorritsma R, Swart WA, Lam TJ. Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves. Infection and Drug Resistance, 2010; 93(2-3): 162-9.
  • 13. Izzo MM, Kirkland PD, Mohler VL, Perkins NR, Gunn AA, House JK. Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea. Infection and Drug Resistance, 2011; 89(5): 167-73.
  • 14. Fenner F, MacLachlan NJ, Dubovi EJ, editors. Fenner's Veterinary Virology. 4th ed. Burlington: Academic Press; 2011. p. 288-90.
  • 15. Steele AD, Geyer A, Gerdes GH. Rotavirüs infections. In: Coetzer JAW, Tustin RC, editors. Infectious Diseases of Livestock. 2nd ed. Cape Town: Oxford University Press Southern Africa; 2004. p. 1256-64.
  • 16. Ghosh S, Varghese V, Sinha M, Kobayashi N, Naik TN, et al. Evidence for interstate transmission and increase in prevalence of bovine group B rotavirüs strains with a novel VP7 genotype among diarrhoeic calves in Eastern and Northern states of India. Epidemiology and Infection, 2007; 135(8): 1324-1330.
  • 17. Tsunemitsu H, Jiang B, Saif LJ. Detection of group C rotavirüs antigens and antibodies in animals and humans by enzyme-linked immunosorbent assays. Journal of Clinical Microbiology, 1992; 30(9): 2129-2134.
  • 18. Dhama K, Chauhan RS, Mahendran M, Malik SV. Rotavirüs diarrhea in bovines and other domestic animals. Veterinary Research Communications, 2009; 33(1): 1-23.
  • 19. Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M. Zoonotic aspects of rotavirüses. Veterinary Microbiology, 2010; 140(3-4): 246-255.
  • 20. Alıç Ural D, Ural K. Zonulin as a preliminary biomarker of lung permeability among diseased calves: Cohort study. Egyptian Journal of Veterinary Sciences, 2023; 54(4): 601-607.
  • 21. Alıç Ural D, Erdoğan S, Erdoğan H, Ural K. Heat stress, intestinal barrier disruption, and calves: multidisciplinary perspective field study. Journal of Advanced Veterinary and Biomedical Sciences and Technologies, 2021; 6(3): 265-269.
  • 22. Alıç Ural D, Ural K, Erdoğan H, Erdoğan S. Alterations in gut integrity due to heat stress among dairy cattle of Aydin city: analytical interpretation of zonulin levels within repetitive measurements. International Journal of: 10.34188/ijvar.2021.4.3.111.
  • 23. Alıç Ural D. Heat Stress and Seasonal Dissipation of Circulating Zonulin Levels Among Calves in Aydın Region. International Journal of Veterinary and Animal Research, 2022; 5(2): 47-49.
  • 24. Alıç Ural D. Serum Zonulin Levels and Fecal Scoring as Probable Early Predictor of Intestinal Inflammation Among Calves with Diarrhea: Cohort Study. Turkiye Klinikleri Journal of Veterinary Sciences, 2023; 14(1): 18-21.
  • 25. Alıç Ural D. Zonulin as a noninvasive selected biomarker of gut barrier function identify and debug calves suffering from diarrhea. International Journal of Veterinary and Animal Research, 2022; 5(3): 159-161.
  • 26. Alıç Ural D. Leaky gut and Giardia duodenalis infection associated serum zonulin levels among calves: randomized clinical study. Turkiye Klinikleri Journal of Veterinary Sciences, 2022; 13(2): 1-5.
  • 27. McGuirk SM. Disease management of dairy calves and heifers. Veterinary Clinics of North America: Food Animal Practice, 2008; 24(1): 139-153.
  • 28. Panivivat R, Kegley EB, Pennington JA, Kellogg DW, Krumpelman SL. Growth performance and health of dairy calves bedded with different types of materials. Journal of Dairy Science, 2004; 87(11): 3736-3745.
  • 29. Sutherland MA, Worth GM, Stewart M. The effect of rearing substrate and space allowance on the behavior and physiology of dairy calves. Journal of Dairy Science, 2014; 97(7): 4455-4463.
  • 30. Forget P, Sodoyez-Goffaux F, Zappitelli A. Permeability of the small intestine to (⁵¹Cr) EDTA in children with acute gastroenteritis or eczema. Journal of Pediatric Gastroenterology and Nutrition, 1985; 4(3): 393-396.
  • 31. Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview. Gastroenterology, 1995; 108(5): 1566-1581.
  • 32. Davin JC, Forget P, Mahieu PR. Increased intestinal permeability to (⁵¹Cr) EDTA is correlated with IgA immune complex-plasma levels in children with IgA-associated nephropathies. Acta Paediatrica Scandinavica, 1988; 77(1): 118-124.
  • 33. Ford RP, Menzies IS, Phillips AD, Walker-Smith JA, Turner MW. Intestinal sugar permeability: relationship to diarrhoeal disease and small bowel morphology. Journal of Pediatric Gastroenterology and Nutrition, 1985; 4(4): 568-574.
  • 34. Cook GC, Menzies IS. Intestinal absorption and unmediated permeation of sugars in post-infective tropical malabsorption (tropical sprue). Digestion, 1986; 33(2): 109-116.
  • 35. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiological Reviews, 2011; 91(1): 151-175.
  • 36. Odenwald MA, Turner JR. Intestinal permeability defects: is it time to treat? Clinical Gastroenterology and Hepatology, 2013; 11(9): 1075-1083.
  • 37. Ajamian M, Steer D, Rosella G, Gibson PR. Serum zonulin as a marker of intestinal mucosal barrier function: may not be what it seems. PLoS One, 2019; 14(1): e0210728.
  • 38. Mani V, Weber TE, Baumgard LH, Gabler NK. Growth and development symposium: endotoxin, inflammation, and intestinal function in livestock. Journal of Animal Science, 2012; 90(5): 1452-1465.
  • 39. Baumgard LH, Rhoads RP Jr. Effects of heat stress on postabsorptive metabolism and energetics. Annual Review of Animal Biosciences, 2013; 1: 311-337.
  • 40. Pearce SC, Mani V, Weber TE, Rhoads RP, Patience JF, Baumgard LH, et al. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. Journal of Animal Science, 2013; 91(11): 5183-5193.
  • 41. Emmanuel DG, Madsen KL, Churchill TA, Dunn SM, Ametaj BN. Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues. Journal of Dairy Science, 2007; 90(12): 5552-5557.
  • 42. Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009; 92(3): 1060-1070.
  • 43. Minuti A, Ahmed S, Trevisi E, Piccioli-Cappelli F, Bertoni G, Jahan N, et al. Experimental acute rumen acidosis in sheep: consequences on clinical, rumen, and gastrointestinal permeability conditions and blood chemistry. Journal of Animal Science, 2014; 92(9): 3966-3977.
  • 44. Moeser AJ, Klok CV, Ryan KA, Wooten JG, Little D, Cook VL, et al. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2007; 292(1): G173-G181.
  • 45. Kvidera SK, Horst EA, Abuajamieh M, Mayorga EJ, Fernandez MV, Baumgard LH. Glucose requirements of an activated immune system in lactating Holstein cows. Journal of Dairy Science, 2017; 100(3): 2360-2374.
  • 46. Wood KM, Palmer SI, Steele MA, Metcalf JA, Penner GB. The influence of age and weaning on permeability of the gastrointestinal tract in Holstein bull calves. Journal of Dairy Science, 2015; 98(10): 7226-7237.
  • 47. Zhang S, Albornoz RI, Aschenbach JR, Barreda DR, Penner GB. Short-term feed restriction impairs the absorptive function of the reticulo-rumen and total tract barrier function in beef cattle. Journal of Animal Science, 2013; 91(4): 1685-1695.
  • 48. Abuajamieh M, Kvidera SK, Fernandez MV, Nayeri A, Upah NC, Nolan EA, et al. Inflammatory biomarkers are associated with ketosis in periparturient Holstein cows. Research in Veterinary Science, 2016; 109: 81-85.
  • 49. Araujo G, Yunta C, Terré M, Mereu A, Ipharraguerre I, Bach A. Intestinal permeability and incidence of diarrhea in newborn calves. Journal of Dairy Science, 2015; 98(10): 7309-7317.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner İç Hastalıkları
Bölüm Araştırma Makaleleri
Yazarlar

Deniz Alıç Ural 0000-0002-2659-3495

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 18 Şubat 2025
Kabul Tarihi 21 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

Vancouver Alıç Ural D. Rotavirus ile Mono- ya da Ko-Enfekte Buzağılarda Bağırsak Geçirgenliğinin Bir Adım Öncesinde Serum Zonulin Seviyeleri ile Dışkı Skorlarının Yansımaları. Bozok Vet Sci. 2025;6(1):16-21.