Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 4, 375 - 382, 01.10.2022
https://doi.org/10.47115/bsagriculture.1093798

Abstract

References

  • Ak K, Uysal M, Tuncer C. 2005. Giresun, Ordu ve Samsun İllerinde Fındık Bahçelerinde Zarar Yapan Yazıcıböcek (Coleoptera: Scolytidae) Türleri, Kısa Biyolojileri ve Bulunuş Oranları. Anadolu Tarım Bilimleri Dergisi, 20(2): 37-44.
  • Aker O. 2018. Fındıkta Zararlı Olan Yazıcı Böceklere (Coleoptera: Curculionidae: Scolytinae) Karşı Mücadelede Semiokimyasal Destekli Tuzak Bitki Yönteminin Geliştirmesi. PhD thesis. Ondokuz Mayıs University, Graduate School of Natural and Applied Sciences, Samsun, pp. 144.
  • Coyle DR, Booth DC, Wallace MS. 2005. Ambrosia beetle (Coleoptera: Scolytidae) species, flight, and attack on living eastern cottonwood trees. Journal of Economic Entomology, 98(6): 2049-2057.
  • De Souza Covre L, Melo AA, Flechtmann CAH. 2021. Flight activity and spread of Xylosandrus crassiusculus (Motschulsky)(Coleoptera: Curculionidae) in Brazil. Trees, Forests and People, 4: 100076.
  • Hofstetter RW, Klepzig KD, Villari C. 2022. Effects of rising temperatures on ectosymbiotic communities associated with bark and ambrosia beetles. In Bark Beetle Management, Ecology, and Climate Change, Academic Press, pp. 303-341.
  • Hulcr J, Stelinski LL. 2017. The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Review of Entomology, 62: 285-303.
  • Kelsey RG, Beh MM, Shaw DC, Manter DK. 2013. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak. Journal of Chemical Ecology, 39(4): 494-506.
  • Kelsey RG, Gallego D, Sánchez-García FJ, Pajares JA. 2014. Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Canadian Journal Of Forest Research, 44(6): 554-561.
  • Kirkendall LR, Biedermann PH, Jordal BH. 2015. Evolution and diversity of bark and ambrosia beetles. In Bark beetles, Academic Press, pp. 85-156.
  • Lehenberger M, Benkert M, Biedermann PB. 2021. Ethanol-enriched substrate facilitates ambrosia beetle fungi, but inhibits their pathogens and fungal symbionts of bark beetles. Frontiers in Microbiology, 11: 590111.
  • Miller DR, Crowe CM, Ginzel MD, Ranger CM, Schultz PB. 2018. Comparison of baited bottle and multiple-funnel traps for ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in Eastern United States1. Journal of Entomological Science, 53(3): 347-360.
  • Miller DR, Rabaglia RJ. 2009. Ethanol and (−)-α-pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern US. Journal of Chemical Ecology, 35(4): 435-448.
  • Noseworthy MK, Humble LM, Sweeney J, Silk P, Mayo P. 2012. Attraction of Monarthrum scutellare (Coleoptera: Curculionidae: Scolytinae) to hydroxy ketones and host volatiles. Canadian Journal of Forest Research, 42(10): 1851-1857.
  • Oliver JB, Mannion CM. 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environmental Entomology, 30(5): 909-918.
  • Ranger CM, Gorzlancyk AM, Addesso KM, Oliver JB, Reding ME, Schultz PB, Held DW. 2014. Conophthorin enhances the electroantennogram and field behavioural response of Xylosandrus germanus (C oleoptera: C urculionidae) to ethanol. Agricultural and Forest Entomology, 16(4): 327-334.
  • Ranger CM, Reding ME, Addesso K, Ginzel M, Rassati D. 2021. Semiochemical-mediated host selection by Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae) attacking horticultural tree crops: a review of basic and applied science. The Canadian Entomologist, 153(1): 103-120.
  • Ranger CM, Reding ME, Schultz PB, Oliver JB. 2013. Influence of flood-stress on ambrosia beetle (Coleoptera: Curculionidae, Scolytinae) host-selection and implications for their management in a changing climate. Agricultural and Forest Entomology, 15: 56-64.
  • Ranger CM, Reding ME, Schultz PB, Oliver JB, Frank SD, Addesso KM, Chong JH, Sampson B, Werle C, Gill S, Krause C. 2016. Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. Journal of Integrated Pest Management, 7(1), 1-23.
  • Ranger CM, Schultz PB, Frank SD, Chong JH, Reding ME. 2015. Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS One, 10(7): e0131496.
  • Ranger CM, Schultz PB, Frank SD, Reding ME. 2019. Freeze stress of deciduous trees induces attacks by opportunistic ambrosia beetles. Agricultural and Forest Entomology, 21(2): 168-179.
  • Rassati D, Faccoli M, Battisti A, Marini L. 2016. Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biological Invasions, 18(10): 2809-2821.
  • Reding ME, Oliver J., Schultz PB, Ranger CM, Youssef NN. 2013. Ethanol injection of ornamental trees facilitates testing insecticide efficacy against ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). Journal of Economic Entomology, 106(1): 289-298.
  • Peer K, Taborsky M. 2007. Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behavioral Ecology and Sociobiology, 61(5): 729-739.
  • Sarikaya O, Sayin H. 2015. Observation on the flight activities of the two ambrosia beetles Anisandrus dispar (Fabricius, 1792.) and Xyleborinus saxesenii (Ratzeburg, 1837.) in Kasnak oak forest nature protection area in the South Western of Turkey. International Journal of Agriculture Innovations and Research, 4(2): 357-360.
  • Saruhan İ, Akyol H. 2012. Monitoring population density and fluctuations of Anisandrus dispar and Xyleborinus saxesenii (Coleoptera: Scolytinae, Curculionidae) in hazelnut orchards. African Journal of Biotechnology, 11(18): 4202-4207.
  • Saruhan İ, Tuncer C. 2000. Population densities and seasonal fluctuations of hazelnut pests in Samsun, Turkey. In Proceedings of V International Congress on Hazelnut, August 27, Corvallis, Oregon (USA) pp. 556: 495-502.
  • Speranza S, Bucini D, Paparatti B. 2008. New observation on biology of european shot-hole borer [xyleborus dispar (f.)] on hazel in northern latium (central italy). In Proceedings of VII International Congress on Hazelnut, June 23-27, Viterbo (Italy), pp. 845: 539-542.
  • Şahin G, Özder N. 2017. Düzce İlinde Fındık Üretim Alanlarında Görülen Yazıcıböcek Türleri (Coleoptera: Scolytidae) Üzerine Araştırmalar. Tekirdağ Ziraat Fakültesi Dergisi, 14(3): 27-37.
  • Tuncer C, Knizek M, Hulcr J. 2017. Scolytinae in hazelnut orchards of Turkey: clarification of species and identification key (Coleoptera, Curculionidae). ZooKeys, 710: 65-76.
  • Turkish State Meteorological Service (TSMS). 2020. Meteorological data source for provinces and districts 2020. Date of access: November 20, 2020.
  • Turkish Statistical Institute (Türkstat). 2022. Production of fruits, beverages and spices crops, ‘Hazelnuts’, 2021. Date of access: July 10, 2022.
  • Uygun N, Ulusoy MR, Karaca İ. 2002. Meyve ve Bağ Zararlıları. Çukurova University, Agriculture Faculty, Adana, Turkey, Publication number: 252, pp. 345.
  • Wang Z, Li Y, Ernstsons AS, Sun R, Hulcr J, Gao L. 2021. The infestation and habitat of the ambrosia beetle Euwallacea interjectus (Coleoptera: Curculionidae: Scolytinae) in the riparian zone of Shanghai. Agricultural and Forest Entomology, 1(159): 104-109.
  • Werle C., Ranger CM, Schultz PB, Reding ME, Addesso KM, Oliver JB, Sampson BJ. 2019. Integrating repellent and attractant semiochemicals into a push–pull strategy for ambrosia beetles (Coleoptera: Curculionidae). Journal of Applied Entomology, 143(4): 333-343.

Increasing the Plant Productivity Using the Automatic Controlled Irrigation System: A Comparative Experimental Study

Year 2022, Volume: 5 Issue: 4, 375 - 382, 01.10.2022
https://doi.org/10.47115/bsagriculture.1093798

Abstract

With the development of technology, today, the use of technology in the field of agriculture has become widespread. In order to meet the increasing demand for agricultural products, automation techniques should be used in agricultural areas in order to make the production of agricultural products simpler and more efficient. In this study, an automation system is designed by making use of technology against problems such as irrigation problem and water shortage, which have become an important problem in agricultural areas. The data coming from the humidity sensor placed in the soil is processed to the controller. According to these processed data, when the soil is dry and the plant needs water, the water-pumping set automatically activates and meets the water needs of the plant. Optimum use of irrigation water to be used in agriculture is prevented unnecessary agricultural irrigation, reducing excessive water waste and providing a very high level of energy savings. At the same time, the negativities caused by excessive irrigation have been prevented. It is observed that the automatic controlled irrigation system used in this study saves a lot of water compared to the conventional irrigation system and increases the productivity of the plants to a great extent.

References

  • Ak K, Uysal M, Tuncer C. 2005. Giresun, Ordu ve Samsun İllerinde Fındık Bahçelerinde Zarar Yapan Yazıcıböcek (Coleoptera: Scolytidae) Türleri, Kısa Biyolojileri ve Bulunuş Oranları. Anadolu Tarım Bilimleri Dergisi, 20(2): 37-44.
  • Aker O. 2018. Fındıkta Zararlı Olan Yazıcı Böceklere (Coleoptera: Curculionidae: Scolytinae) Karşı Mücadelede Semiokimyasal Destekli Tuzak Bitki Yönteminin Geliştirmesi. PhD thesis. Ondokuz Mayıs University, Graduate School of Natural and Applied Sciences, Samsun, pp. 144.
  • Coyle DR, Booth DC, Wallace MS. 2005. Ambrosia beetle (Coleoptera: Scolytidae) species, flight, and attack on living eastern cottonwood trees. Journal of Economic Entomology, 98(6): 2049-2057.
  • De Souza Covre L, Melo AA, Flechtmann CAH. 2021. Flight activity and spread of Xylosandrus crassiusculus (Motschulsky)(Coleoptera: Curculionidae) in Brazil. Trees, Forests and People, 4: 100076.
  • Hofstetter RW, Klepzig KD, Villari C. 2022. Effects of rising temperatures on ectosymbiotic communities associated with bark and ambrosia beetles. In Bark Beetle Management, Ecology, and Climate Change, Academic Press, pp. 303-341.
  • Hulcr J, Stelinski LL. 2017. The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Review of Entomology, 62: 285-303.
  • Kelsey RG, Beh MM, Shaw DC, Manter DK. 2013. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak. Journal of Chemical Ecology, 39(4): 494-506.
  • Kelsey RG, Gallego D, Sánchez-García FJ, Pajares JA. 2014. Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Canadian Journal Of Forest Research, 44(6): 554-561.
  • Kirkendall LR, Biedermann PH, Jordal BH. 2015. Evolution and diversity of bark and ambrosia beetles. In Bark beetles, Academic Press, pp. 85-156.
  • Lehenberger M, Benkert M, Biedermann PB. 2021. Ethanol-enriched substrate facilitates ambrosia beetle fungi, but inhibits their pathogens and fungal symbionts of bark beetles. Frontiers in Microbiology, 11: 590111.
  • Miller DR, Crowe CM, Ginzel MD, Ranger CM, Schultz PB. 2018. Comparison of baited bottle and multiple-funnel traps for ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in Eastern United States1. Journal of Entomological Science, 53(3): 347-360.
  • Miller DR, Rabaglia RJ. 2009. Ethanol and (−)-α-pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern US. Journal of Chemical Ecology, 35(4): 435-448.
  • Noseworthy MK, Humble LM, Sweeney J, Silk P, Mayo P. 2012. Attraction of Monarthrum scutellare (Coleoptera: Curculionidae: Scolytinae) to hydroxy ketones and host volatiles. Canadian Journal of Forest Research, 42(10): 1851-1857.
  • Oliver JB, Mannion CM. 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environmental Entomology, 30(5): 909-918.
  • Ranger CM, Gorzlancyk AM, Addesso KM, Oliver JB, Reding ME, Schultz PB, Held DW. 2014. Conophthorin enhances the electroantennogram and field behavioural response of Xylosandrus germanus (C oleoptera: C urculionidae) to ethanol. Agricultural and Forest Entomology, 16(4): 327-334.
  • Ranger CM, Reding ME, Addesso K, Ginzel M, Rassati D. 2021. Semiochemical-mediated host selection by Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae) attacking horticultural tree crops: a review of basic and applied science. The Canadian Entomologist, 153(1): 103-120.
  • Ranger CM, Reding ME, Schultz PB, Oliver JB. 2013. Influence of flood-stress on ambrosia beetle (Coleoptera: Curculionidae, Scolytinae) host-selection and implications for their management in a changing climate. Agricultural and Forest Entomology, 15: 56-64.
  • Ranger CM, Reding ME, Schultz PB, Oliver JB, Frank SD, Addesso KM, Chong JH, Sampson B, Werle C, Gill S, Krause C. 2016. Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. Journal of Integrated Pest Management, 7(1), 1-23.
  • Ranger CM, Schultz PB, Frank SD, Chong JH, Reding ME. 2015. Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS One, 10(7): e0131496.
  • Ranger CM, Schultz PB, Frank SD, Reding ME. 2019. Freeze stress of deciduous trees induces attacks by opportunistic ambrosia beetles. Agricultural and Forest Entomology, 21(2): 168-179.
  • Rassati D, Faccoli M, Battisti A, Marini L. 2016. Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biological Invasions, 18(10): 2809-2821.
  • Reding ME, Oliver J., Schultz PB, Ranger CM, Youssef NN. 2013. Ethanol injection of ornamental trees facilitates testing insecticide efficacy against ambrosia beetles (Coleoptera: Curculionidae: Scolytinae). Journal of Economic Entomology, 106(1): 289-298.
  • Peer K, Taborsky M. 2007. Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behavioral Ecology and Sociobiology, 61(5): 729-739.
  • Sarikaya O, Sayin H. 2015. Observation on the flight activities of the two ambrosia beetles Anisandrus dispar (Fabricius, 1792.) and Xyleborinus saxesenii (Ratzeburg, 1837.) in Kasnak oak forest nature protection area in the South Western of Turkey. International Journal of Agriculture Innovations and Research, 4(2): 357-360.
  • Saruhan İ, Akyol H. 2012. Monitoring population density and fluctuations of Anisandrus dispar and Xyleborinus saxesenii (Coleoptera: Scolytinae, Curculionidae) in hazelnut orchards. African Journal of Biotechnology, 11(18): 4202-4207.
  • Saruhan İ, Tuncer C. 2000. Population densities and seasonal fluctuations of hazelnut pests in Samsun, Turkey. In Proceedings of V International Congress on Hazelnut, August 27, Corvallis, Oregon (USA) pp. 556: 495-502.
  • Speranza S, Bucini D, Paparatti B. 2008. New observation on biology of european shot-hole borer [xyleborus dispar (f.)] on hazel in northern latium (central italy). In Proceedings of VII International Congress on Hazelnut, June 23-27, Viterbo (Italy), pp. 845: 539-542.
  • Şahin G, Özder N. 2017. Düzce İlinde Fındık Üretim Alanlarında Görülen Yazıcıböcek Türleri (Coleoptera: Scolytidae) Üzerine Araştırmalar. Tekirdağ Ziraat Fakültesi Dergisi, 14(3): 27-37.
  • Tuncer C, Knizek M, Hulcr J. 2017. Scolytinae in hazelnut orchards of Turkey: clarification of species and identification key (Coleoptera, Curculionidae). ZooKeys, 710: 65-76.
  • Turkish State Meteorological Service (TSMS). 2020. Meteorological data source for provinces and districts 2020. Date of access: November 20, 2020.
  • Turkish Statistical Institute (Türkstat). 2022. Production of fruits, beverages and spices crops, ‘Hazelnuts’, 2021. Date of access: July 10, 2022.
  • Uygun N, Ulusoy MR, Karaca İ. 2002. Meyve ve Bağ Zararlıları. Çukurova University, Agriculture Faculty, Adana, Turkey, Publication number: 252, pp. 345.
  • Wang Z, Li Y, Ernstsons AS, Sun R, Hulcr J, Gao L. 2021. The infestation and habitat of the ambrosia beetle Euwallacea interjectus (Coleoptera: Curculionidae: Scolytinae) in the riparian zone of Shanghai. Agricultural and Forest Entomology, 1(159): 104-109.
  • Werle C., Ranger CM, Schultz PB, Reding ME, Addesso KM, Oliver JB, Sampson BJ. 2019. Integrating repellent and attractant semiochemicals into a push–pull strategy for ambrosia beetles (Coleoptera: Curculionidae). Journal of Applied Entomology, 143(4): 333-343.
There are 34 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Anıl Burak Acar 0000-0002-8319-2065

Hüseyin Mengü 0000-0003-2617-1222

Seçil Karatay 0000-0002-1942-6728

Faruk Erken 0000-0003-2048-1203

Publication Date October 1, 2022
Submission Date March 26, 2022
Acceptance Date July 21, 2022
Published in Issue Year 2022 Volume: 5 Issue: 4

Cite

APA Acar, A. B., Mengü, H., Karatay, S., Erken, F. (2022). Increasing the Plant Productivity Using the Automatic Controlled Irrigation System: A Comparative Experimental Study. Black Sea Journal of Agriculture, 5(4), 375-382. https://doi.org/10.47115/bsagriculture.1093798

                                                  24890