Araştırma Makalesi
BibTex RIS Kaynak Göster

The Single and Interactive Effect of Salinity and Temperature on Germination Characteristics of Italian Ryegrass (Lolium multiflorum Lam.) Seeds

Yıl 2024, Cilt: 7 Sayı: 5, 563 - 569, 15.09.2024
https://doi.org/10.47115/bsagriculture.1525082

Öz

Italian ryegrass (Lolium multiflorum) is a grass species within the Lolium genus of the Poaceae family. In recent years, annual ryegrass has shown excellent adaptability to the climatic and soil conditions of Türkiye. It serves as a good alternative forage source to bridge the forage deficit and is widely used as a low-growing native turf mixture in local landscaping. Abiotic stress factors are among the primary elements that hinder plant growth and development. Temperature and salinity significantly affect seed germination and development. This study aimed to investigate the germination and growth parameters of three different Italian ryegrass varieties (İlkadım, Kocayaşar, Zeybek) under different salt concentrations (Sodium chloride-NaCl) and temperatures. Three different salt doses (control, 5 EC, and 10 EC) and three different temperatures (15 °C, 20 °C, and 30 °C) were used in the study. Germination percentage, shoot and root lengths, fresh and dry weights of shoots, and ion leakage parameters were examined. The results showed that the highest germination rate, shoot and root lengths, and fresh and dry weights in all varieties were recorded at 20 °C with 0 EC and 20 °C with 5 EC salt treatments, while the lowest were observed at 15 °C with 10 EC salt treatments. The lowest ion leakage was determined in the control treatment at 15 °C, while the highest ion leakage was observed in the 10 EC treatment at 30 °C. Increasing temperature positively influenced growth parameters. It was determined that salt stress could be tolerated up to a certain level at higher temperatures. This study on different Italian ryegrass varieties highlights the importance of developing ryegrass varieties resistant to temperature and salt stress, which are significant issues in sustainable agriculture.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Açıkgöz E. 2021. Yem Bitkileri (Cilt 1). Tarım ve Orman Bakanlığı Bitkisel Üretim Müdürlüğü Yayınları, Ankara, Türkiye, pp: 58.
  • Arun-Chinnappa KS, Ranawake L, Seneweera S. 2017. Impacts and management of temperature and water stress in crop plants. Abiotic Stress Manag Resil Agri, 2017: 221-233.
  • Aydın A. 2018. Farklı Kabak (Cucurbita maxima x C. Moschata ve Lagenaria sceraria) Genotiplerinin Yüksek pH Koşullarına Karşı Toleransı ve Kavuna Anaçlık Potansiyellerinin Belirlenmesi. MSc Thesis, Erciyes University, Institute of Science, Kayseri, Türkiye, pp: 77.
  • Bormann FH, Balmori D, Geballe GT, Geballe GT. 2001. Redesigning the American lawn: a search for environmental harmony. Yale University Press, New Haven, US.
  • Butler C, Butler E, Orians CM. 2012. Native plant enthusiasm reaches new heights: Perceptions, evidence, and the future of green roofs. Urban for Urban Green, 11(1): 1-10.
  • Debez A, Ben Hamed K, Grignon C, Abdelly C. 2004. Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil, 262(1): 179-189.
  • Doğan R, Budaklı-Çarpıcı E. 2016. Farklı tuz konsantrasyonlarının bazı tritikale hatlarının çimlenmesi üzerine etkileri. Kahramanmaras Sutcu Imam Univ Tar Doga Derg, 19(2): 130-135.
  • Doruk Kahraman N, Topal A. 2024. Tuz stresine maruz kalan makarnalık buğday çeşitlerinde tohum çimlenmesinin fizyolojik göstergelerindeki farklılıklar. Mustafa Kemal Üniv Tar Bil Derg, 29(1): 148-157.
  • Guo T, Tian C, Chen C, Duan Z, Zhu Q, Sun LZ. 2020. Growth and carbohydrate dynamic of perennial ryegrass seedlings during PEG-simulated drought and subsequent recovery. Plant Physiol Biochem, 154: 85-93.
  • Hasanuzzaman M, Fujita M. 2022. Plant oxidative stress: Biology, physiology and mitigation. Plants, 11(9): 1185.
  • Hussein MM, Balbaa LK, Gaballah MS. 2007. Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci, 3(4): 321-328.
  • Kalisz A, Kornaś A, Skoczowski A, Oliwa J, Jurkow R, Gil J, Caruso G. 2023. Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal (oid) oxide nanoparticles. BMC Plant Biol, 23(1): 329.
  • Kaya MD, Okatan V, Başçetinçelik A, Kolsarıcı Ö. 2006. Determination of seed germination properties of some plant species in response to temperature. J Agron, 5(3): 492-495.
  • Khan MA, Gul B, Weber DJ. 2002. Seed germination in relation to salinity and temperature in Sarcobatus vermiculatus. Biol Plant, 45: 133-135.
  • Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. 2023. Abiotic stress in crop production. Int J Mol Sci, 24(7): 6603.
  • Kuşvuran A, Nazlı RI, Kuşvuran Ş. 2015. The effects of salinity on seed germination in perennial ryegrass (Lolium perenne L.) varieties. Turk Tar Doga Bilim Derg, 2(1): 78-84.
  • Lale V, Kökten K. 2020. Bingöl şartlarında bazı italyan çimi (Lolium multiflorum L.) çeşitlerinin ot verimi ve kalitesinin belirlenmesi. Türk Doğa Fen Derg, Ekim TDFD Özel Sayısı: 46-50.
  • Lamichaney A, Parihar AK, Hazra KK, Dixit GP, Katiyar PK, Singh D, Singh NP. 2021. Untangling the influence of heat stress on crop phenology, seed set, seed weight, and germination in field pea (Pisum sativum L.). Front Plant Sci, 12: 635868.
  • Li Z, Zhu L, Zhao F, Li J, Zhang X, Kong X, Wu H, Zhang Z. 2022. Plant salinity stress response and nano-enabled plant salt tolerance. Front Plant Sci, 13: 843994.
  • Lin J, Hua X, Peng X, Dong B, Yan X. 2018. Germination responses of ryegrass (annual vs. perennial) seed to the interactive effects of temperature and salt-alkali stress. Front Plant Sci, 9: 1458.
  • Marcum KB, Pessarakli M. 2013. Relative salinity tolerance of 35 Lolium spp. cultivars for urban landscape and forage use. Develop Soil Salin Assess Reclamat, 2013: 397-403.okumus
  • Morton MJ, Awlia M, Al‐Tamimi N, Saade S, Pailles Y, Negrão S, Tester M. 2019. Salt stress under the scalpel–dissecting the genetics of salt tolerance. The Plant J, 97(1): 148-163.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59(1): 651-681.
  • Naeem M, Iqbal M, Shakeel A, Ul-Allah S, Hussain M, Rehman A, Ashraf M. 2020. Genetic basis of ion exclusion in salinity stressed wheat: Implications in improving crop yield. Plant Growth Regul, 92: 479-496.
  • Okumuş O, Dalda-Şekerci A. 2024. Effects of different salt stress and temperature applications on germination in mung bean (Vigna radiata (L.) R. Wilczek) genotypes. BSJ Agri, 7(3): 310-316.
  • Okumuş O, Doruk Kahraman N, Oğuz MÇ, Yıldız M. 2023. Magnetic field treatment in barley: Improved salt tolerance in early stages of development. Selcuk J Agric Food Sci, 37(3): 556-569.
  • Okumuş O, Say A, Eren B, Demirel F, Uzun S, Yaman M, Aydın A. 2024. Using Machine Learning Algorithms to Investigate the Impact of Temperature Treatment and Salt Stress on Four Forage Peas (Pisum sativum var. arvense L.). Horticulturae, 10(6): 656.
  • Özkan U, Benlioğlu B, Telci Kahramanoğullari C. 2022. A Comparison of Germination Responses on Italian Ryegrass (diploid vs tetraploid) Seeds to Interactive Effects of Salinity and Temperature. Pol J Environ Stud, 31(5): 4229-4237.
  • Pessarakli M, Kopec DM. 2008. Comparing growth responses of selected cool-season turfgrasses under salinity and drought stresses.
  • Pişkin M. 2007. İtalyan çiminde (Lolium multiflorum Lam.) farklı tohum miktarlarının verim ve bazı verim unsurları üzerine etkileri üzerine araştırmalar. MSc Thesis, Selcuk University, Institute of Science, Konya, Türkiye, pp: 54.
  • Pooya ES, Tehranifar A, Shoor M, Selahvarzi Y, Ansari H. 2013. The use of native turf mixtures to approach sustainable lawn in urban landscapes. Urban for Urban Green, 12(4): 532-536.
  • Snedecor GWWG. 1967. Cochran, Statistical Methods, the Iowa State University Press, Iowa, US.
  • Soysal ŞÖA, Demirkol G, Aşçı ÖÖ, Arıcı KY, Acar Z, Yılmaz N. 2021. Tuz stresinin tek yıllık çim (Lolium multiflorum L.)’de çimlenme ve fide gelişim özelliklerine etkisi. Türk Turk Tar Doga Bil Derg, 8(2): 301-307.
  • TUİK. 2023. Yem bitkileri üretimi. Türkiye İstatistik Kurumu. URL= https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (accessed date: December 22, 2023).
  • Zabihi-e-Mahmoodabad R, Jamaati-e-Somarin S, Khayatnezhad M, Gholamin R. 2011. The study of effect salinity stress on germination and seedling growth in five different genotypes of wheat. Adv Environ Biol, 5(1): 177-179.
Yıl 2024, Cilt: 7 Sayı: 5, 563 - 569, 15.09.2024
https://doi.org/10.47115/bsagriculture.1525082

Öz

Proje Numarası

-

Kaynakça

  • Açıkgöz E. 2021. Yem Bitkileri (Cilt 1). Tarım ve Orman Bakanlığı Bitkisel Üretim Müdürlüğü Yayınları, Ankara, Türkiye, pp: 58.
  • Arun-Chinnappa KS, Ranawake L, Seneweera S. 2017. Impacts and management of temperature and water stress in crop plants. Abiotic Stress Manag Resil Agri, 2017: 221-233.
  • Aydın A. 2018. Farklı Kabak (Cucurbita maxima x C. Moschata ve Lagenaria sceraria) Genotiplerinin Yüksek pH Koşullarına Karşı Toleransı ve Kavuna Anaçlık Potansiyellerinin Belirlenmesi. MSc Thesis, Erciyes University, Institute of Science, Kayseri, Türkiye, pp: 77.
  • Bormann FH, Balmori D, Geballe GT, Geballe GT. 2001. Redesigning the American lawn: a search for environmental harmony. Yale University Press, New Haven, US.
  • Butler C, Butler E, Orians CM. 2012. Native plant enthusiasm reaches new heights: Perceptions, evidence, and the future of green roofs. Urban for Urban Green, 11(1): 1-10.
  • Debez A, Ben Hamed K, Grignon C, Abdelly C. 2004. Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil, 262(1): 179-189.
  • Doğan R, Budaklı-Çarpıcı E. 2016. Farklı tuz konsantrasyonlarının bazı tritikale hatlarının çimlenmesi üzerine etkileri. Kahramanmaras Sutcu Imam Univ Tar Doga Derg, 19(2): 130-135.
  • Doruk Kahraman N, Topal A. 2024. Tuz stresine maruz kalan makarnalık buğday çeşitlerinde tohum çimlenmesinin fizyolojik göstergelerindeki farklılıklar. Mustafa Kemal Üniv Tar Bil Derg, 29(1): 148-157.
  • Guo T, Tian C, Chen C, Duan Z, Zhu Q, Sun LZ. 2020. Growth and carbohydrate dynamic of perennial ryegrass seedlings during PEG-simulated drought and subsequent recovery. Plant Physiol Biochem, 154: 85-93.
  • Hasanuzzaman M, Fujita M. 2022. Plant oxidative stress: Biology, physiology and mitigation. Plants, 11(9): 1185.
  • Hussein MM, Balbaa LK, Gaballah MS. 2007. Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci, 3(4): 321-328.
  • Kalisz A, Kornaś A, Skoczowski A, Oliwa J, Jurkow R, Gil J, Caruso G. 2023. Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal (oid) oxide nanoparticles. BMC Plant Biol, 23(1): 329.
  • Kaya MD, Okatan V, Başçetinçelik A, Kolsarıcı Ö. 2006. Determination of seed germination properties of some plant species in response to temperature. J Agron, 5(3): 492-495.
  • Khan MA, Gul B, Weber DJ. 2002. Seed germination in relation to salinity and temperature in Sarcobatus vermiculatus. Biol Plant, 45: 133-135.
  • Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. 2023. Abiotic stress in crop production. Int J Mol Sci, 24(7): 6603.
  • Kuşvuran A, Nazlı RI, Kuşvuran Ş. 2015. The effects of salinity on seed germination in perennial ryegrass (Lolium perenne L.) varieties. Turk Tar Doga Bilim Derg, 2(1): 78-84.
  • Lale V, Kökten K. 2020. Bingöl şartlarında bazı italyan çimi (Lolium multiflorum L.) çeşitlerinin ot verimi ve kalitesinin belirlenmesi. Türk Doğa Fen Derg, Ekim TDFD Özel Sayısı: 46-50.
  • Lamichaney A, Parihar AK, Hazra KK, Dixit GP, Katiyar PK, Singh D, Singh NP. 2021. Untangling the influence of heat stress on crop phenology, seed set, seed weight, and germination in field pea (Pisum sativum L.). Front Plant Sci, 12: 635868.
  • Li Z, Zhu L, Zhao F, Li J, Zhang X, Kong X, Wu H, Zhang Z. 2022. Plant salinity stress response and nano-enabled plant salt tolerance. Front Plant Sci, 13: 843994.
  • Lin J, Hua X, Peng X, Dong B, Yan X. 2018. Germination responses of ryegrass (annual vs. perennial) seed to the interactive effects of temperature and salt-alkali stress. Front Plant Sci, 9: 1458.
  • Marcum KB, Pessarakli M. 2013. Relative salinity tolerance of 35 Lolium spp. cultivars for urban landscape and forage use. Develop Soil Salin Assess Reclamat, 2013: 397-403.okumus
  • Morton MJ, Awlia M, Al‐Tamimi N, Saade S, Pailles Y, Negrão S, Tester M. 2019. Salt stress under the scalpel–dissecting the genetics of salt tolerance. The Plant J, 97(1): 148-163.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59(1): 651-681.
  • Naeem M, Iqbal M, Shakeel A, Ul-Allah S, Hussain M, Rehman A, Ashraf M. 2020. Genetic basis of ion exclusion in salinity stressed wheat: Implications in improving crop yield. Plant Growth Regul, 92: 479-496.
  • Okumuş O, Dalda-Şekerci A. 2024. Effects of different salt stress and temperature applications on germination in mung bean (Vigna radiata (L.) R. Wilczek) genotypes. BSJ Agri, 7(3): 310-316.
  • Okumuş O, Doruk Kahraman N, Oğuz MÇ, Yıldız M. 2023. Magnetic field treatment in barley: Improved salt tolerance in early stages of development. Selcuk J Agric Food Sci, 37(3): 556-569.
  • Okumuş O, Say A, Eren B, Demirel F, Uzun S, Yaman M, Aydın A. 2024. Using Machine Learning Algorithms to Investigate the Impact of Temperature Treatment and Salt Stress on Four Forage Peas (Pisum sativum var. arvense L.). Horticulturae, 10(6): 656.
  • Özkan U, Benlioğlu B, Telci Kahramanoğullari C. 2022. A Comparison of Germination Responses on Italian Ryegrass (diploid vs tetraploid) Seeds to Interactive Effects of Salinity and Temperature. Pol J Environ Stud, 31(5): 4229-4237.
  • Pessarakli M, Kopec DM. 2008. Comparing growth responses of selected cool-season turfgrasses under salinity and drought stresses.
  • Pişkin M. 2007. İtalyan çiminde (Lolium multiflorum Lam.) farklı tohum miktarlarının verim ve bazı verim unsurları üzerine etkileri üzerine araştırmalar. MSc Thesis, Selcuk University, Institute of Science, Konya, Türkiye, pp: 54.
  • Pooya ES, Tehranifar A, Shoor M, Selahvarzi Y, Ansari H. 2013. The use of native turf mixtures to approach sustainable lawn in urban landscapes. Urban for Urban Green, 12(4): 532-536.
  • Snedecor GWWG. 1967. Cochran, Statistical Methods, the Iowa State University Press, Iowa, US.
  • Soysal ŞÖA, Demirkol G, Aşçı ÖÖ, Arıcı KY, Acar Z, Yılmaz N. 2021. Tuz stresinin tek yıllık çim (Lolium multiflorum L.)’de çimlenme ve fide gelişim özelliklerine etkisi. Türk Turk Tar Doga Bil Derg, 8(2): 301-307.
  • TUİK. 2023. Yem bitkileri üretimi. Türkiye İstatistik Kurumu. URL= https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (accessed date: December 22, 2023).
  • Zabihi-e-Mahmoodabad R, Jamaati-e-Somarin S, Khayatnezhad M, Gholamin R. 2011. The study of effect salinity stress on germination and seedling growth in five different genotypes of wheat. Adv Environ Biol, 5(1): 177-179.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Research Articles
Yazarlar

Onur Okumuş 0000-0001-6957-3729

Akife Dalda Şekerci 0000-0001-8554-6501

Satı Uzun 0000-0001-9919-3145

Proje Numarası -
Yayımlanma Tarihi 15 Eylül 2024
Gönderilme Tarihi 31 Temmuz 2024
Kabul Tarihi 12 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 5

Kaynak Göster

APA Okumuş, O., Dalda Şekerci, A., & Uzun, S. (2024). The Single and Interactive Effect of Salinity and Temperature on Germination Characteristics of Italian Ryegrass (Lolium multiflorum Lam.) Seeds. Black Sea Journal of Agriculture, 7(5), 563-569. https://doi.org/10.47115/bsagriculture.1525082

                                                  24890