Research Article
BibTex RIS Cite

Effect of Potassium Optimization on Wheat Drought Tolerance in Controlled Conditions

Year 2025, Volume: 8 Issue: 1, 51 - 61, 15.01.2025
https://doi.org/10.47115/bsagriculture.1573391

Abstract

Wheat (Triticum spp.) is an important cereal crop consumed worldwide, but it is highly susceptible to drought. Potassium plays an essential role in osmotic regulation, photosynthesis, and nitrogen assimilation, all of which are critical for maintaining plant growth and productivity under stress conditions. The aim of this study is to investigate how different potassium levels, including sufficient potassium (SK, 1 mM) and low potassium (LK, 0.05 mM), affect the drought tolerance of wheat during the early stages of seedling development under PEG-induced drought stress. Plant physiological development, canopy temperature, photosynthetic efficiency, antioxidant defense enzymes, and nitrogen assimilation enzymes were assessed in the experiment. In non-drought conditions, LK increased canopy temperature and reduced dry matter yield and photosynthetic performance, with these effects becoming more pronounced under drought stress. SK-treated plants exhibited higher biomass, chlorophyll content, maximum quantum efficiency of photosystem II, and lower canopy temperatures, even under drought conditions. Furthermore, LK restricted the accumulation of key osmotic regulators, including proline, amino acids, and soluble sugars. Under drought stress, LK plants also showed increased hydrogen peroxide and superoxide anion levels, while SK plants had lower reactive oxygen species accumulation and higher antioxidant enzyme activities (catalase and superoxide dismutase). Additionally, LK resulted in reduced activity of nitrogen assimilation enzymes (nitrate reductase, NR, and nitrite reductase, NiR) under both normal and drought conditions. In contrast, SK-treated wheat seedlings maintained higher NR and NiR activities and higher soluble protein content during drought stress. These findings underscore the critical role of potassium management in enhancing wheat yield, particularly in water-scarce regions, as optimal potassium supply strengthens essential physiological and biochemical mechanisms that improve plant tolerance to drought stress.

Ethical Statement

Ethics committee approval was not required for this study, as it did not involve any research on humans or animals.

Thanks

The author expresses gratitude to Harran University for providing access to digital resources, laboratory facilities, and plant growth chambers.

References

  • Aebi H. 1984. Catalase in vitro. Methods Enzymol, 105: 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3
  • Afzal S, Chaudhary N, Singh NK. 2021. Role of Soluble Sugars in Metabolism and Sensing Under Abiotic Stress. In: Aftab T, Hakeem KR, editors. Plant Growth Regulators. Springer International Publishing, Cham, London, UK, pp: 305-334. https://doi.org/10.1007/978-3-030-61153-8_14
  • Ahammed GJ, Chen Y, Liu C, Yang Y. 2022. Light regulation of potassium in plants. Plant Physiol Biochem, 170: 316-324. https://doi.org/10.1016/j.plaphy.2021.12.019
  • Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal R. 2017. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants, 23: 731-744. https://doi.org/10.1007/s12298-017-0462-7
  • Ahmad F, Singh A, Kamal A. 2020. Osmoprotective role of sugar in mitigating abiotic stress in plants. In: Roychoudhury A, Tripathi DK (editors). Protective Chemical Agents in the Amelioration of Plant Abiotic Stress. 1st edn. Wiley, New Jersey, US, pp: 53-70. https://doi.org/10.1002/9781119552154.ch3
  • Akbari B, Baghaei‐Yazdi N, Bahmaie M, Mahdavi Abhari F. 2022. The role of plant‐derived natural antioxidants in reduction of oxidative stress. Biofactors, 48: 611-633. https://doi.org/10.1002/biof.1831
  • Alagoz SM, Lajayer BA, Ghorbanpour M. 2023. Proline and soluble carbohydrates biosynthesis and their roles in plants under abiotic stresses. In: Ghorbanpour M, Shahid MA (editors). Plant stress mitigators. Elsevier, Academic Press, pp: 169-185. https://doi.org/10.1016/B978-0-323-89871-3.00027-6
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiol, 24: 1-15. https://doi.org/10.1104/pp.24.1.1
  • Baslam M, Mitsui T, Sueyoshi K, Ohyama T. 2020. Recent advances in carbon and nitrogen metabolism in C3 plants. Int J Mol Sci, 22: 318. https://doi.org/10.3390/ijms22010318
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water stress studied. Plant Soil, 39: 205-207. https://doi.org/10.1007/BF00018060
  • Batool M, El-Badri AM, Wang Z, Mohamed IA, Yang H, Ai X, Salah A, Hassan MU, Sami R, Kuai J, Wang B, Zhou G. 2022. Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 12: 579. https://doi.org/10.3390/agronomy12030579
  • Beauchamp C, Fridovich I. 1971. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal Biochem, 44: 276-287. http://dx.doi.org/10.1016/0003-2697(71)90370
  • Begna T. 2020. Effects of drought stress on crop production and productivity. Intl J Res Stud Agric Sci, 6: 34-43. https://doi.org/10.20431/2454-6224.0609005
  • Bo ZHU, Xu QW, Liu BY, Duan MC, Wang LC. 2022. Effect of potassium deficiency on endogenous hormones, photosynthesis and characteristics of chlorophyll fluorescence in Brassica napus under drought stress. Chin J Oil Crop Sci, 44: 570-580. https://doi.org/10.19802/j.issn.1007-9084.2021133
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Bukhari MA, Shah AN, Fahad S, Iqbal J, Nawaz F, Manan A, Baloch MS. 2021. Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance using polyethylene glycol. Arab J Geosci, 14: 2808. https://doi.org/10.1007/s12517-021-09073-0
  • Celik A, Kılıc M, Ramazanoglu E, Bellitürk K, Sakin E. 2023. Comparison of biological indicators of soil quality of horticultural crops based on no-tillage and non-synthetic systems. Erwerbs-Obstbau, 65: 2605-2613. https://doi.org/10.1007/s10341-023-00976-8
  • Chen M, Zhu K, Xie J, Liu J, Qiao Z, Tan P, Peng F. 2023. Ammonium-nitrate mixtures dominated by NH4+-N promote the growth of pecan (Carya illinoinensis) through enhanced N uptake and assimilation. Front Plant Sci, 14: 1186818. https://doi.org/10.3389/fpls.2023.1186818
  • Choudhary S, Wani KI, Naeem M, Khan MMA, Aftab T. 2023. Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. J Plant Growth Regul, 42: 539-553. https://doi.org/10.1007/s00344-022-10584-7
  • Dianjun L, Yanhong D, Xiaoqin C, Huoyan W, Jianmin Z. 2022. Comparison of potential potassium leaching associated with organic and inorganic potassium sources in different arable soils in China. Pedosphere, 32: 330-338. https://doi.org/10.1016/S1002-0160(21)60077-2
  • Dikilitas M, Karakas S, Ahmad P. 2016. Effect of lead on plant and human DNA damages and its impact on the environment. In: Ahmad P, editors. Plant metal interaction, Elsevier, Academic Press, pp: 41-67. https://doi.org/10.1016/B978-0-12-803158-2.00003-5
  • Du Y, Zhao Q, Chen L, Yao X, Xie F. 2020. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy, 10: 302. https://doi.org/10.3390/agronomy10020302
  • Dubois M, Gilles A, Hamilton K, Rebers A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem, 28: 350-356. https://doi.org/10.1021/ac60111a017
  • Elstner EF, Heupel A. 1976. Formation of hydrogen peroxide by isolated cell walls from horseradish. Planta, 130: 175-180. https://doi.org/10.1007/BF00384416
  • Fang S, Yang H, Duan L, Shi J, Guo L. 2023. Potassium fertilizer improves drought stress alleviation potential in sesame by enhancing photosynthesis and hormonal regulation. Plant Physiol Biochem, 200: 107744. https://doi.org/10.1016/j.plaphy.2023.107744
  • Fang S, Yang H, Wei G, Shen T, Wan Z, Wang M, Wang X, Wu Z. 2022. Potassium application enhances drought tolerance in sesame by mitigating oxidative damage and regulating osmotic adjustment. Front Plant Sci, 13: 1096606. https://doi.org/10.3389/fpls.2022.1096606
  • Feng H, Fan X, Miller AJ, Xu G. 2020. Plant nitrogen uptake and assimilation: regulation of cellular pH homeostasis. J Exp Bot, 71: 4380-4392. https://doi.org/10.1093/jxb/eraa150
  • Genç S, Soysal Mİ. 2018. Parametric and nonparametric post hoc tests. BSJ Eng Sci, 1(1): 18-27.
  • Guo Y, Li D, Liu L, Sun H, Zhu L, Zhang K, Zhao H, Zhang Y, Li A, Bai Z, Tian L, Dong H, Li, C. 2022. Seed priming with melatonin promotes seed germination and seedling growth of Triticale hexaploide L. under PEG-6000 induced drought stress. Front Plant Sci, 13: 932912. https://doi.org/10.3389/fpls.2022.932912
  • Gurrieri L, Merico M, Trost P, Forlani G, Sparla F. 2020. Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology, 9: 367. https://doi.org/10.3390/biology9110367
  • Hasanuzzaman M, Bhuyan MB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, Masud AAC, Moumita Fujita M. 2018. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8: 31. https://doi.org/10.3390/agronomy8030031
  • Hemati A, Moghiseh E, Amirifar A, Mofidi-Chelan M, Asgari Lajayer B. 2022. Physiological Effects of Drought Stress in Plants. In: Vaishnav A, Arya SS, Choudhary DK (editors). Plant Stress Mitigators. Springer Nature Singapore, Singapore, pp: 113-124. https://doi.org/10.1007/978-981-16-7759-5_6
  • Holmstrup M, Slotsbo S, Rozsypal J, Henriksen PG, Bayley M. 2015. Accumulation of free amino acids during exposure to drought in three springtail species. J Insect Physiol, 82: 114-121. https://doi.org/10.1016/j.jinsphys.2015.09.005
  • Hu W, Zhao W, Yang J, Oosterhuis DM, Loka DA, Zhou Z. 2016. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiol Biochem, 101: 113-123. https://doi.org/10.1016/j.plaphy.2016.01.019
  • Hu XU, Shangming J, Hongwei Y, Jia LIU, Juliang JIN. 2021. Sensitivity of winter wheat to drought occurring at different growth stages. J Irrig Drain, 40: 66. https://doi.org/10.13522/j.cnki.ggps.2020708
  • Igrejas G, Branlard G. 2020. The Importance of wheat. In: Igrejas G, Ikeda TM, Guzmán C (editors). Wheat quality for improving processing and human health. Springer International Publishing, Cham, pp: 1-7. https://doi.org/10.1007/978-3-030-34163-3_1
  • Islam S, Islam R, Kandwal P, Khanam S, Proshad R, Kormoker T, Tusher TR. 2022. Nitrate transport and assimilation in plants: a potential review. Arch Agron Soil Sci, 68: 133-150. https://doi.org/10.1080/03650340.2020.1826042
  • Ivanov A, Kosobryukhov A, Kreslavski V, Allakhverdiev SI. 2023. Changes in the photosynthetic performance, the activity of enzymes of nitrogen metabolism, and proline content in the leaves of wheat plants after exposure to low CO2 concentration. Photosynthetica, 61: 190-202. https://doi.org/10.32615/ps.2022.047
  • Jaworski EG. 1971. Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun, 43: 1274-1279. https://doi.org/10.1016/s0006-291x(71)80010-4
  • Johnson R, Vishwakarma K, Hossen MS, Kumar V, Shackira AM, Puthur JT, Abdi G, Sarraf M, Hasanuzzaman M. 2022. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol Biochem, 172: 56-69. https://doi.org/10.1016/j.plaphy.2022.01.001
  • Ju F, Pang J, Huo Y, Zhu J, Yu K, Sun L, Loka DA, Hu W, Zhou Z, Wang S. 2021. Potassium application alleviates the negative effects of salt stress on cotton (Gossypium hirsutum L.) yield by improving the ionic homeostasis, photosynthetic capacity and carbohydrate metabolism of the leaf subtending the cotton boll. Field Crops Res, 272: 108288. https://doi.org/10.1016/j.fcr.2021.108288
  • Kacar B, İnal A. 2008. Bitki Analizleri Kitabı. Nobel Yayınları. 1241: 120-164.
  • Kaya C, Shabala S. 2023. Melatonin improves drought stress tolerance of pepper (Capsicum annuum) plants via upregulating nitrogen metabolism. Funct Plant Biol, 51. https://doi.org/10.1071/FP23060
  • Khatoon NS, Khan A, Gupta M. 2024. Regulation of nutrient use efficiency: Boon to wheat cultivar under co-impact of drought and arsenic. Plant Soil, 2024: 1-23. https://doi.org/10.1007/s11104-024-06779-4
  • Khodabakhshi L, Seyedi A, Mazaheri-Tirani M, Motlagh BP. 2023. Morphological and physiological responses of Indigofera tinctoria L. to putrescine under drought stress. Russ J Plant Physl, 70: 43. https://doi.org/10.1134/S102144372260252X
  • Kumar P, Kumar T, Singh S, Tuteja N, Prasad R, Singh J. 2020. Potassium: A key modulator for cell homeostasis. J Biotech, 324: 198-210. https://doi.org/10.1016/j.jbiotec.2020.10.018
  • Kumari R, Bhatnagar S, Kalra C. 2022. Nitrogen assimilation in plants. In: Kumari R, Bhatnagar S, Kalra C (editors). Advances in Plant Nitrogen Metabolism. CRC Press, pp: 38-54. https://doi.org/10.1201/9781003248361
  • Lee YP, Takahashi T. 1966. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem, 14: 71-77. https://doi.org/10.1016/0003-2697(66)90057-1
  • Liu X, Hu B, Chu C. 2022. Nitrogen assimilation in plants: current status and future prospects. J Genet Genom, 49: 394-404. https://doi.org/10.1016/j.jgg.2021.12.006
  • Loreto F, Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol, 127: 1781-1787. https://doi.org/10.1104/pp.010497
  • Lu Z, Hu W, Ye X, Lu J, Gu H, Li X, Cong R, Ren T. 2022. Potassium regulates diel leaf growth of Brassica napus by coordinating the rhythmic carbon supply and water balance. J Exp Bot, 73: 3686-3698. https://doi.org/10.1093/jxb/erac060
  • Mahpara S, Zainab A, Ullah R, Kausar S, Bilal M, Latif MI, Arif M, Akhtar I, Al-Hashimi A, Elshikh MS, Zivcak M, Zuan ATK. 2022. The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat (Triticum aestivum L.) genotypes. PloS One, 17: e0262937. https://doi.org/10.1371/journal.pone.0262937
  • Majeed S, Nawaz F, Naeem M, Ashraf MY, Ejaz S, Ahmad KS, Tauseef S, Farid G, Khalid I, Mehmood K. 2020. Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (Zea mays L.) under drought stress. Plant Physiol Biochem, 155: 147-160. https://doi.org/10.1016/j.plaphy.2020.07.005
  • Mansour HA, El Sayed Mohamed S, Lightfoot DA. 2020. Molecular studies for drought tolerance in some Egyptian wheat genotypes under different irrigation systems. Open Agric, 5: 280-290. https://doi.org/10.1515/opag-2020-0030
  • Mehta D, Vyas S. 2023. Comparative bio-accumulation of osmoprotectants in saline stress tolerating plants: A review. Plant Stress, 9: 100177. https://doi.org/10.1016/j.stress.2023.100177
  • Mishra P, Sharma P. 2019. Superoxide Dismutases (SODs) and their role in regulating abiotic stress induced oxidative stress in plants. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (editors). Reactive oxygen, nitrogen and sulfur species in plants. Wiley, pp: 53-88. https://doi.org/10.1002/9781119468677.ch3
  • Mohi-Ud-Din M, Hossain MA, Rohman MM, Uddin MN, Haque MS, Ahmed JU, Hossain A, Hassan MM, Mostofa MG. 2021. Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants, 10: 879. https://doi.org/10.3390/plants10050879
  • Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, Khan MAR, Mochida K, Tran LSP. 2022. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol Biochem, 186: 279-289. https://doi.org/10.1016/j.plaphy.2022.07.011
  • Nguyen TTQ, Trinh LTH, Pham HBV, Le TV, Phung TKH, Lee SH, Cheong JJ. 2020. Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory. AIMS Bioeng, 2020: 7. https://doi.org/10.3934/bioeng.2020011
  • Nowroz F, Hasanuzzaman M, Siddika A, Parvin K, Caparros G, Nahar K, Prasad PV. 2024. Elevated tropospheric ozone and crop production: Potential negative effects and plant defense mechanisms. Front Plant Sci, 14: 1244515. https://doi.org/10.3389/fpls.2023.1244515
  • Pamungkas SST, Farid N. 2022. Drought stress: responses and mechanism in plants. Rev Agric Sci, 10: 168-185. https://doi.org/10.7831/ras.10.0_168
  • Pan Y, Lu Z, Lu J, Li X, Cong R, Ren T. 2017. Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiol Biochem, 113: 110-121. https://doi.org/10.1016/j.plaphy.2017.01.027
  • Pandey GK, Mahiwal S. 2020. Role of Potassium in Plants. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-45953-6
  • Pantha P, Oh DH, Longstreth D, Dassanayake M. 2023. Living with high potassium: balance between nutrient acquisition and K-induced salt stress signaling. Plant Physiol, 191: 1102-1121. https://doi.org/10.1093/plphys/kiac564
  • Pequeno DN, Hernandez-Ochoa IM, Reynolds M, Sonder K, MoleroMilan A, Roberstson RD, Lopes MS, Xiong W, Kropff M, Asseng S. 2021. Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environ Res Lett, 16: 054070. https://doi.org/10.1088/1748-9326/abd970
  • Qi Y, Ma L, Ghani MI, Peng Q, Fan R, Hu X, Chen X. 2023. Effects of drought stress induced by hypertonic polyethylene glycol (PEG-6000) on Passiflora edulis sims physiological properties. Plants, 12: 2296. https://doi.org/10.3390/plants12122296
  • Qiao M, Hong C, Jiao Y, Hou S, Gao H. 2024. Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants, 13: 1808. https://doi.org/10.3390/plants13131808
  • Qu Z, Tian Y, Zhou X, Li X, Zhou Q, Wang X, Dong S. 2023. Effects of exogenous sodium nitroprusside spraying on physiological characteristics of soybean leaves at the flowering stage under drought stress. Plants, 12: 1598. https://doi.org/10.3390/plants12081598
  • Ramazanoglu E, Kılınçoğlu N, Beyyavas V, Cevheri Cİ, Sakin E, Çelik A. 2024. Glycine betaine application improved seed cotton yield and economic returns under deficit irrigation. J King Saud Univ Sci, 36: 103445. https://doi.org/10.1016/j.jksus.2024.103445
  • Ramirez JM, Del Campo FF, Paneque A, Losada M. 1966. Ferredoxin-nitrite reductase from spinach. Biochim Biophys Acta, 118: 58-71. https://doi.org/10.1016/S0926-6593(66)80144-3
  • Rashid S, Rashid K, Javid H, Wani BA, Magray JA, ul Qadir R, Islam T, Javed M, Nawchoo IA. 2022. Assimilation of nitrates in plants. In: Kumari R, Bhatnagar S, Kalra C (editors). Advances in plant nitrogen metabolism. CRC Press, pp: 55-68. https://doi.org/10.1201/9781003248361
  • Rawat J, Pandey N, Saxena J. 2022. Role of potassium in plant photosynthesis, transport, growth and yield. In: Iqbal N, Umar S (editors). Role of potassium in abiotic stress. Springer Nature Singapore, Singapore, pp: 1-14. https://doi.org/10.1007/978-981-16-4461-0_1
  • Reimer M, Hartmann TE, Oelofse M, Magid J, Bünemann EK, Möller K. 2020. Reliance on biological nitrogen fixation depletes soil phosphorus and potassium reserves. Nutr Cycl Agroecosyst, 118: 273-291. https://doi.org/10.1007/s10705-020-10101-w
  • Sahay S, Robledo-Arratia L, Glowacka K, Gupta M. 2021. Root NRT, NiR, AMT, GS, GOGAT and GDH expression levels reveal NO and ABA mediated drought tolerance in Brassica juncea L. Sci Rep, 11: 7992. https://doi.org/10.1038/s41598-021-86401-0
  • Sardans J, Peñuelas J. 2021. Potassium control of plant functions: Ecological and agricultural implications. Plants, 10: 419. https://doi.org/10.3390/plants10020419
  • Sathee L, Jha SK, Rajput OS, Singh D, Kumar S, Kumar A. 2021. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. Plant Physiol Biochem, 165: 161-172. https://doi.org/10.1016/j.plaphy.2021.05.013
  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10: 259. https://doi.org/10.3390/plants10020259
  • Semida WM, Abdelkhalik A, Rady MO, Marey RA, Abd El-Mageed TA. 2020. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci Hortic, 272: 109580. https://doi.org/10.1016/j.scienta.2020.109580
  • Shafreen M, Vishwakarma K, Shrivastava N, Kumar N. 2021. Physiology and Distribution of Nitrogen in Soils. In: Cruz C, Vishwakarma K, Choudhary DK, Varma A (editors). Soil nitrogen ecology. Springer International Publishing, Cham, pp: 3-31. https://doi.org/10.1007/978-3-030-71206-8_1
  • Shehzad MA, Nawaz F, Ahmad F, Ahmad N, Masood S. 2020. Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicol Environ Saf, 187: 109841. https://doi.org/10.1016/j.ecoenv.2019.109841
  • Shohat H, Cheriker H, Kilambi HV, Illouz Eliaz N, Blum S, Amsellem Z, Tarkowská D, Aharoni A, Eshed Y, Weiss D. 2021. Inhibition of gibberellin accumulation by water deficiency promotes fast and long‐term ‘drought avoidance’ responses in tomato. New Phytol, 232: 1985-1998. https://doi.org/10.1111/nph.17709
  • Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Almohisen IA. 2021. Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Rep, 40: 1543-1564. https://doi.org/10.1007/s00299-021-02731-3
  • Simões PHO, de Carvalho JOP, de Araujo DG, Gama MAP, Lima CC, Oliveira Neto CF, de Okumura RS, da Silva RTL, Nogueira GA dos S, de Paula MT. 2020. Effect of phosphorus and potassium on gas exchanges of’Tachigali vulgaris’. Aust J Crop Sci, 14: 1961-1969. https://doi.org/10.21475/ajcs.20.14.12.2838
  • Song X, Zhou G, He Q, Zhou H. 2020. Stomatal limitations to photosynthesis and their critical water conditions in different growth stages of maize under water stress. Agric Water Manag, 241: 106330. https://doi.org/10.1016/j.agwat.2020.106330
  • Taha RS, Seleiman MF, Alotaibi M, Alhammad BA, Rady MM, Mahdi A. 2020. Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy, 10: 1741. https://doi.org/10.3390/agronomy10111741
  • Taria S, Arora A, Alam B, Kumar S, Yadav A, Kumar S, Kumar M, Anuragi H, Kumar R, Meena S. 2022. Introduction to Plant Nitrogen Metabolism: An overview. In: Kumari R, Bhatnagar S, Kalra C (editors). Advances in plant nitrogen metabolism. CRC Press, pp: 1-18. https://doi.org/10.1201/9781003248361
  • Tavakol E, Jákli B, Cakmak I, Dittert K, Senbayram M. 2021. Optimization of potassium supply under osmotic stress mitigates oxidative damage in barley. Plants, 11: 55.
  • Tavakol E, Jákli B, Cakmak I, Dittert K, Karlovsky P, Pfohl K, Senbayram M. 2018. Optimized potassium nutrition improves plant-water-relations of barley under PEG-induced osmotic stress. Plant Soil, 430: 23-35. https://doi.org/10.1007/s11104-018-3704-8
  • Tighe-Neira R, Alberdi M, Arce-Johnson P, Romero J, Reyes-Díaz M, Rengel Z, Inostroza-Blancheteau C. 2018. Role of Potassium in governing photosynthetic processes and plant yield. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (editors). Plant nutrients and abiotic stress tolerance. Springer Singapore, Singapore, pp: 191-203. https://doi.org/10.1007/978-981-10-9044-8_8
  • Tittal M, Mir RA, Jatav KS, Agarwal RM. 2021. Supplementation of potassium alleviates water stress‐induced changes in sorghum bicolor L. Physiol Plan, 172: 1149-1161. https://doi.org/10.1111/ppl.13306
  • Ul-Allah S, Ijaz M, Nawaz A, Sattar A, Sher A, Naeem M, Shahzad U, Farooq U, Nawaz F, Mahmood K. 2020. Potassium application improves grain yield and alleviates drought susceptibility in diverse maize hybrids. Plants, 9: 75. https://doi.org/10.3390/plants9010075
  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA. 2022. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11: 1620. https://doi.org/10.3390/plants11131620
  • Wang M, Zheng Q, Shen Q, Guo S. 2013. The critical role of potassium in plant stress response. Int J Mol Sci, 14: 7370-7390. https://doi.org/10.3390/ijms14047370
  • Wei X, Han L, Xu N, Sun M, Yang X. 2024. Nitrate nitrogen enhances the efficiency of photoprotection in Leymus chinensis under drought stress. Front Plant Sci, 15: 1348925. https://doi.org/10.3389/fpls.2024.1348925
  • Xu Q, Fu H, Zhu B, Hussain HA, Zhang K, Tian X, Duan M, Xie X, Wang L. 2021. Potassium improves drought stress tolerance in plants by affecting root morphology, root exudates, and microbial diversity. Metabolites, 11: 131. https://doi.org/10.3390/metabo11030131
  • Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. 2021. Response mechanism of plants to drought stress. Horticulturae, 7: 50.
  • Ye JY, Tian WH, Jin CW. 2022. Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. Stress Biol, 2: 4. https://doi.org/10.1007/s44154-021-00030-1
  • Zahoor R, Zhao W, Abid M, Dong H, Zhou Z. 2017. Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress. J Plant Physiol, 215: 30-38. https://doi.org/10.1016/j.jplph.2017.05.001
  • Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. 2023. Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomolecules, 13(10): 1443. https://doi.org/10.3390/biom13101443
  • Zhao W, Liu L, Shen Q, Yang J, Han X, Tian F, Wu J. 2020. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12(8): 1-19. https://doi.org/10.3390/W12082127
  • Zheng J, Xie X, Li C, Wang H, Yu Y, Huang B. 2023. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Int J Phytoremediation, 25: 1596-1613. https://doi.org/10.1080/15226514.2023.2176466
  • Zhong C, Cao X, Hu J, Zhu L, Zhang J, Huang J, Jin Q. 2017. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Front Plant Sci, 8: 1079. https://doi.org/10.3389/fpls.2017.01079
  • Zhu B, Xu Q, Zou Y, Ma S, Zhang X, Xie X, Wang L. 2020. Effect of potassium deficiency on growth, antioxidants, ionome and metabolism in rapeseed under drought stress. Plant Growth Regul, 90: 455-466. https://doi.org/10.1007/s10725-019-00545-8
  • Živanović B, Milić Komić S, Tosti T, Vidović M, Prokić L, Veljović Jovanović S. 2020. Leaf soluble sugars and free amino acids as important components of abscisic acid-Mediated drought response in tomato. Plants, 9: 1147. https://doi.org/10.3390/plants9091147
Year 2025, Volume: 8 Issue: 1, 51 - 61, 15.01.2025
https://doi.org/10.47115/bsagriculture.1573391

Abstract

References

  • Aebi H. 1984. Catalase in vitro. Methods Enzymol, 105: 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3
  • Afzal S, Chaudhary N, Singh NK. 2021. Role of Soluble Sugars in Metabolism and Sensing Under Abiotic Stress. In: Aftab T, Hakeem KR, editors. Plant Growth Regulators. Springer International Publishing, Cham, London, UK, pp: 305-334. https://doi.org/10.1007/978-3-030-61153-8_14
  • Ahammed GJ, Chen Y, Liu C, Yang Y. 2022. Light regulation of potassium in plants. Plant Physiol Biochem, 170: 316-324. https://doi.org/10.1016/j.plaphy.2021.12.019
  • Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal R. 2017. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants, 23: 731-744. https://doi.org/10.1007/s12298-017-0462-7
  • Ahmad F, Singh A, Kamal A. 2020. Osmoprotective role of sugar in mitigating abiotic stress in plants. In: Roychoudhury A, Tripathi DK (editors). Protective Chemical Agents in the Amelioration of Plant Abiotic Stress. 1st edn. Wiley, New Jersey, US, pp: 53-70. https://doi.org/10.1002/9781119552154.ch3
  • Akbari B, Baghaei‐Yazdi N, Bahmaie M, Mahdavi Abhari F. 2022. The role of plant‐derived natural antioxidants in reduction of oxidative stress. Biofactors, 48: 611-633. https://doi.org/10.1002/biof.1831
  • Alagoz SM, Lajayer BA, Ghorbanpour M. 2023. Proline and soluble carbohydrates biosynthesis and their roles in plants under abiotic stresses. In: Ghorbanpour M, Shahid MA (editors). Plant stress mitigators. Elsevier, Academic Press, pp: 169-185. https://doi.org/10.1016/B978-0-323-89871-3.00027-6
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiol, 24: 1-15. https://doi.org/10.1104/pp.24.1.1
  • Baslam M, Mitsui T, Sueyoshi K, Ohyama T. 2020. Recent advances in carbon and nitrogen metabolism in C3 plants. Int J Mol Sci, 22: 318. https://doi.org/10.3390/ijms22010318
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water stress studied. Plant Soil, 39: 205-207. https://doi.org/10.1007/BF00018060
  • Batool M, El-Badri AM, Wang Z, Mohamed IA, Yang H, Ai X, Salah A, Hassan MU, Sami R, Kuai J, Wang B, Zhou G. 2022. Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 12: 579. https://doi.org/10.3390/agronomy12030579
  • Beauchamp C, Fridovich I. 1971. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal Biochem, 44: 276-287. http://dx.doi.org/10.1016/0003-2697(71)90370
  • Begna T. 2020. Effects of drought stress on crop production and productivity. Intl J Res Stud Agric Sci, 6: 34-43. https://doi.org/10.20431/2454-6224.0609005
  • Bo ZHU, Xu QW, Liu BY, Duan MC, Wang LC. 2022. Effect of potassium deficiency on endogenous hormones, photosynthesis and characteristics of chlorophyll fluorescence in Brassica napus under drought stress. Chin J Oil Crop Sci, 44: 570-580. https://doi.org/10.19802/j.issn.1007-9084.2021133
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Bukhari MA, Shah AN, Fahad S, Iqbal J, Nawaz F, Manan A, Baloch MS. 2021. Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance using polyethylene glycol. Arab J Geosci, 14: 2808. https://doi.org/10.1007/s12517-021-09073-0
  • Celik A, Kılıc M, Ramazanoglu E, Bellitürk K, Sakin E. 2023. Comparison of biological indicators of soil quality of horticultural crops based on no-tillage and non-synthetic systems. Erwerbs-Obstbau, 65: 2605-2613. https://doi.org/10.1007/s10341-023-00976-8
  • Chen M, Zhu K, Xie J, Liu J, Qiao Z, Tan P, Peng F. 2023. Ammonium-nitrate mixtures dominated by NH4+-N promote the growth of pecan (Carya illinoinensis) through enhanced N uptake and assimilation. Front Plant Sci, 14: 1186818. https://doi.org/10.3389/fpls.2023.1186818
  • Choudhary S, Wani KI, Naeem M, Khan MMA, Aftab T. 2023. Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. J Plant Growth Regul, 42: 539-553. https://doi.org/10.1007/s00344-022-10584-7
  • Dianjun L, Yanhong D, Xiaoqin C, Huoyan W, Jianmin Z. 2022. Comparison of potential potassium leaching associated with organic and inorganic potassium sources in different arable soils in China. Pedosphere, 32: 330-338. https://doi.org/10.1016/S1002-0160(21)60077-2
  • Dikilitas M, Karakas S, Ahmad P. 2016. Effect of lead on plant and human DNA damages and its impact on the environment. In: Ahmad P, editors. Plant metal interaction, Elsevier, Academic Press, pp: 41-67. https://doi.org/10.1016/B978-0-12-803158-2.00003-5
  • Du Y, Zhao Q, Chen L, Yao X, Xie F. 2020. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy, 10: 302. https://doi.org/10.3390/agronomy10020302
  • Dubois M, Gilles A, Hamilton K, Rebers A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem, 28: 350-356. https://doi.org/10.1021/ac60111a017
  • Elstner EF, Heupel A. 1976. Formation of hydrogen peroxide by isolated cell walls from horseradish. Planta, 130: 175-180. https://doi.org/10.1007/BF00384416
  • Fang S, Yang H, Duan L, Shi J, Guo L. 2023. Potassium fertilizer improves drought stress alleviation potential in sesame by enhancing photosynthesis and hormonal regulation. Plant Physiol Biochem, 200: 107744. https://doi.org/10.1016/j.plaphy.2023.107744
  • Fang S, Yang H, Wei G, Shen T, Wan Z, Wang M, Wang X, Wu Z. 2022. Potassium application enhances drought tolerance in sesame by mitigating oxidative damage and regulating osmotic adjustment. Front Plant Sci, 13: 1096606. https://doi.org/10.3389/fpls.2022.1096606
  • Feng H, Fan X, Miller AJ, Xu G. 2020. Plant nitrogen uptake and assimilation: regulation of cellular pH homeostasis. J Exp Bot, 71: 4380-4392. https://doi.org/10.1093/jxb/eraa150
  • Genç S, Soysal Mİ. 2018. Parametric and nonparametric post hoc tests. BSJ Eng Sci, 1(1): 18-27.
  • Guo Y, Li D, Liu L, Sun H, Zhu L, Zhang K, Zhao H, Zhang Y, Li A, Bai Z, Tian L, Dong H, Li, C. 2022. Seed priming with melatonin promotes seed germination and seedling growth of Triticale hexaploide L. under PEG-6000 induced drought stress. Front Plant Sci, 13: 932912. https://doi.org/10.3389/fpls.2022.932912
  • Gurrieri L, Merico M, Trost P, Forlani G, Sparla F. 2020. Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology, 9: 367. https://doi.org/10.3390/biology9110367
  • Hasanuzzaman M, Bhuyan MB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, Masud AAC, Moumita Fujita M. 2018. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8: 31. https://doi.org/10.3390/agronomy8030031
  • Hemati A, Moghiseh E, Amirifar A, Mofidi-Chelan M, Asgari Lajayer B. 2022. Physiological Effects of Drought Stress in Plants. In: Vaishnav A, Arya SS, Choudhary DK (editors). Plant Stress Mitigators. Springer Nature Singapore, Singapore, pp: 113-124. https://doi.org/10.1007/978-981-16-7759-5_6
  • Holmstrup M, Slotsbo S, Rozsypal J, Henriksen PG, Bayley M. 2015. Accumulation of free amino acids during exposure to drought in three springtail species. J Insect Physiol, 82: 114-121. https://doi.org/10.1016/j.jinsphys.2015.09.005
  • Hu W, Zhao W, Yang J, Oosterhuis DM, Loka DA, Zhou Z. 2016. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiol Biochem, 101: 113-123. https://doi.org/10.1016/j.plaphy.2016.01.019
  • Hu XU, Shangming J, Hongwei Y, Jia LIU, Juliang JIN. 2021. Sensitivity of winter wheat to drought occurring at different growth stages. J Irrig Drain, 40: 66. https://doi.org/10.13522/j.cnki.ggps.2020708
  • Igrejas G, Branlard G. 2020. The Importance of wheat. In: Igrejas G, Ikeda TM, Guzmán C (editors). Wheat quality for improving processing and human health. Springer International Publishing, Cham, pp: 1-7. https://doi.org/10.1007/978-3-030-34163-3_1
  • Islam S, Islam R, Kandwal P, Khanam S, Proshad R, Kormoker T, Tusher TR. 2022. Nitrate transport and assimilation in plants: a potential review. Arch Agron Soil Sci, 68: 133-150. https://doi.org/10.1080/03650340.2020.1826042
  • Ivanov A, Kosobryukhov A, Kreslavski V, Allakhverdiev SI. 2023. Changes in the photosynthetic performance, the activity of enzymes of nitrogen metabolism, and proline content in the leaves of wheat plants after exposure to low CO2 concentration. Photosynthetica, 61: 190-202. https://doi.org/10.32615/ps.2022.047
  • Jaworski EG. 1971. Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun, 43: 1274-1279. https://doi.org/10.1016/s0006-291x(71)80010-4
  • Johnson R, Vishwakarma K, Hossen MS, Kumar V, Shackira AM, Puthur JT, Abdi G, Sarraf M, Hasanuzzaman M. 2022. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol Biochem, 172: 56-69. https://doi.org/10.1016/j.plaphy.2022.01.001
  • Ju F, Pang J, Huo Y, Zhu J, Yu K, Sun L, Loka DA, Hu W, Zhou Z, Wang S. 2021. Potassium application alleviates the negative effects of salt stress on cotton (Gossypium hirsutum L.) yield by improving the ionic homeostasis, photosynthetic capacity and carbohydrate metabolism of the leaf subtending the cotton boll. Field Crops Res, 272: 108288. https://doi.org/10.1016/j.fcr.2021.108288
  • Kacar B, İnal A. 2008. Bitki Analizleri Kitabı. Nobel Yayınları. 1241: 120-164.
  • Kaya C, Shabala S. 2023. Melatonin improves drought stress tolerance of pepper (Capsicum annuum) plants via upregulating nitrogen metabolism. Funct Plant Biol, 51. https://doi.org/10.1071/FP23060
  • Khatoon NS, Khan A, Gupta M. 2024. Regulation of nutrient use efficiency: Boon to wheat cultivar under co-impact of drought and arsenic. Plant Soil, 2024: 1-23. https://doi.org/10.1007/s11104-024-06779-4
  • Khodabakhshi L, Seyedi A, Mazaheri-Tirani M, Motlagh BP. 2023. Morphological and physiological responses of Indigofera tinctoria L. to putrescine under drought stress. Russ J Plant Physl, 70: 43. https://doi.org/10.1134/S102144372260252X
  • Kumar P, Kumar T, Singh S, Tuteja N, Prasad R, Singh J. 2020. Potassium: A key modulator for cell homeostasis. J Biotech, 324: 198-210. https://doi.org/10.1016/j.jbiotec.2020.10.018
  • Kumari R, Bhatnagar S, Kalra C. 2022. Nitrogen assimilation in plants. In: Kumari R, Bhatnagar S, Kalra C (editors). Advances in Plant Nitrogen Metabolism. CRC Press, pp: 38-54. https://doi.org/10.1201/9781003248361
  • Lee YP, Takahashi T. 1966. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem, 14: 71-77. https://doi.org/10.1016/0003-2697(66)90057-1
  • Liu X, Hu B, Chu C. 2022. Nitrogen assimilation in plants: current status and future prospects. J Genet Genom, 49: 394-404. https://doi.org/10.1016/j.jgg.2021.12.006
  • Loreto F, Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol, 127: 1781-1787. https://doi.org/10.1104/pp.010497
  • Lu Z, Hu W, Ye X, Lu J, Gu H, Li X, Cong R, Ren T. 2022. Potassium regulates diel leaf growth of Brassica napus by coordinating the rhythmic carbon supply and water balance. J Exp Bot, 73: 3686-3698. https://doi.org/10.1093/jxb/erac060
  • Mahpara S, Zainab A, Ullah R, Kausar S, Bilal M, Latif MI, Arif M, Akhtar I, Al-Hashimi A, Elshikh MS, Zivcak M, Zuan ATK. 2022. The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat (Triticum aestivum L.) genotypes. PloS One, 17: e0262937. https://doi.org/10.1371/journal.pone.0262937
  • Majeed S, Nawaz F, Naeem M, Ashraf MY, Ejaz S, Ahmad KS, Tauseef S, Farid G, Khalid I, Mehmood K. 2020. Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (Zea mays L.) under drought stress. Plant Physiol Biochem, 155: 147-160. https://doi.org/10.1016/j.plaphy.2020.07.005
  • Mansour HA, El Sayed Mohamed S, Lightfoot DA. 2020. Molecular studies for drought tolerance in some Egyptian wheat genotypes under different irrigation systems. Open Agric, 5: 280-290. https://doi.org/10.1515/opag-2020-0030
  • Mehta D, Vyas S. 2023. Comparative bio-accumulation of osmoprotectants in saline stress tolerating plants: A review. Plant Stress, 9: 100177. https://doi.org/10.1016/j.stress.2023.100177
  • Mishra P, Sharma P. 2019. Superoxide Dismutases (SODs) and their role in regulating abiotic stress induced oxidative stress in plants. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (editors). Reactive oxygen, nitrogen and sulfur species in plants. Wiley, pp: 53-88. https://doi.org/10.1002/9781119468677.ch3
  • Mohi-Ud-Din M, Hossain MA, Rohman MM, Uddin MN, Haque MS, Ahmed JU, Hossain A, Hassan MM, Mostofa MG. 2021. Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants, 10: 879. https://doi.org/10.3390/plants10050879
  • Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, Khan MAR, Mochida K, Tran LSP. 2022. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol Biochem, 186: 279-289. https://doi.org/10.1016/j.plaphy.2022.07.011
  • Nguyen TTQ, Trinh LTH, Pham HBV, Le TV, Phung TKH, Lee SH, Cheong JJ. 2020. Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory. AIMS Bioeng, 2020: 7. https://doi.org/10.3934/bioeng.2020011
  • Nowroz F, Hasanuzzaman M, Siddika A, Parvin K, Caparros G, Nahar K, Prasad PV. 2024. Elevated tropospheric ozone and crop production: Potential negative effects and plant defense mechanisms. Front Plant Sci, 14: 1244515. https://doi.org/10.3389/fpls.2023.1244515
  • Pamungkas SST, Farid N. 2022. Drought stress: responses and mechanism in plants. Rev Agric Sci, 10: 168-185. https://doi.org/10.7831/ras.10.0_168
  • Pan Y, Lu Z, Lu J, Li X, Cong R, Ren T. 2017. Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiol Biochem, 113: 110-121. https://doi.org/10.1016/j.plaphy.2017.01.027
  • Pandey GK, Mahiwal S. 2020. Role of Potassium in Plants. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-45953-6
  • Pantha P, Oh DH, Longstreth D, Dassanayake M. 2023. Living with high potassium: balance between nutrient acquisition and K-induced salt stress signaling. Plant Physiol, 191: 1102-1121. https://doi.org/10.1093/plphys/kiac564
  • Pequeno DN, Hernandez-Ochoa IM, Reynolds M, Sonder K, MoleroMilan A, Roberstson RD, Lopes MS, Xiong W, Kropff M, Asseng S. 2021. Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environ Res Lett, 16: 054070. https://doi.org/10.1088/1748-9326/abd970
  • Qi Y, Ma L, Ghani MI, Peng Q, Fan R, Hu X, Chen X. 2023. Effects of drought stress induced by hypertonic polyethylene glycol (PEG-6000) on Passiflora edulis sims physiological properties. Plants, 12: 2296. https://doi.org/10.3390/plants12122296
  • Qiao M, Hong C, Jiao Y, Hou S, Gao H. 2024. Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants, 13: 1808. https://doi.org/10.3390/plants13131808
  • Qu Z, Tian Y, Zhou X, Li X, Zhou Q, Wang X, Dong S. 2023. Effects of exogenous sodium nitroprusside spraying on physiological characteristics of soybean leaves at the flowering stage under drought stress. Plants, 12: 1598. https://doi.org/10.3390/plants12081598
  • Ramazanoglu E, Kılınçoğlu N, Beyyavas V, Cevheri Cİ, Sakin E, Çelik A. 2024. Glycine betaine application improved seed cotton yield and economic returns under deficit irrigation. J King Saud Univ Sci, 36: 103445. https://doi.org/10.1016/j.jksus.2024.103445
  • Ramirez JM, Del Campo FF, Paneque A, Losada M. 1966. Ferredoxin-nitrite reductase from spinach. Biochim Biophys Acta, 118: 58-71. https://doi.org/10.1016/S0926-6593(66)80144-3
  • Rashid S, Rashid K, Javid H, Wani BA, Magray JA, ul Qadir R, Islam T, Javed M, Nawchoo IA. 2022. Assimilation of nitrates in plants. In: Kumari R, Bhatnagar S, Kalra C (editors). Advances in plant nitrogen metabolism. CRC Press, pp: 55-68. https://doi.org/10.1201/9781003248361
  • Rawat J, Pandey N, Saxena J. 2022. Role of potassium in plant photosynthesis, transport, growth and yield. In: Iqbal N, Umar S (editors). Role of potassium in abiotic stress. Springer Nature Singapore, Singapore, pp: 1-14. https://doi.org/10.1007/978-981-16-4461-0_1
  • Reimer M, Hartmann TE, Oelofse M, Magid J, Bünemann EK, Möller K. 2020. Reliance on biological nitrogen fixation depletes soil phosphorus and potassium reserves. Nutr Cycl Agroecosyst, 118: 273-291. https://doi.org/10.1007/s10705-020-10101-w
  • Sahay S, Robledo-Arratia L, Glowacka K, Gupta M. 2021. Root NRT, NiR, AMT, GS, GOGAT and GDH expression levels reveal NO and ABA mediated drought tolerance in Brassica juncea L. Sci Rep, 11: 7992. https://doi.org/10.1038/s41598-021-86401-0
  • Sardans J, Peñuelas J. 2021. Potassium control of plant functions: Ecological and agricultural implications. Plants, 10: 419. https://doi.org/10.3390/plants10020419
  • Sathee L, Jha SK, Rajput OS, Singh D, Kumar S, Kumar A. 2021. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. Plant Physiol Biochem, 165: 161-172. https://doi.org/10.1016/j.plaphy.2021.05.013
  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10: 259. https://doi.org/10.3390/plants10020259
  • Semida WM, Abdelkhalik A, Rady MO, Marey RA, Abd El-Mageed TA. 2020. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci Hortic, 272: 109580. https://doi.org/10.1016/j.scienta.2020.109580
  • Shafreen M, Vishwakarma K, Shrivastava N, Kumar N. 2021. Physiology and Distribution of Nitrogen in Soils. In: Cruz C, Vishwakarma K, Choudhary DK, Varma A (editors). Soil nitrogen ecology. Springer International Publishing, Cham, pp: 3-31. https://doi.org/10.1007/978-3-030-71206-8_1
  • Shehzad MA, Nawaz F, Ahmad F, Ahmad N, Masood S. 2020. Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicol Environ Saf, 187: 109841. https://doi.org/10.1016/j.ecoenv.2019.109841
  • Shohat H, Cheriker H, Kilambi HV, Illouz Eliaz N, Blum S, Amsellem Z, Tarkowská D, Aharoni A, Eshed Y, Weiss D. 2021. Inhibition of gibberellin accumulation by water deficiency promotes fast and long‐term ‘drought avoidance’ responses in tomato. New Phytol, 232: 1985-1998. https://doi.org/10.1111/nph.17709
  • Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Almohisen IA. 2021. Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Rep, 40: 1543-1564. https://doi.org/10.1007/s00299-021-02731-3
  • Simões PHO, de Carvalho JOP, de Araujo DG, Gama MAP, Lima CC, Oliveira Neto CF, de Okumura RS, da Silva RTL, Nogueira GA dos S, de Paula MT. 2020. Effect of phosphorus and potassium on gas exchanges of’Tachigali vulgaris’. Aust J Crop Sci, 14: 1961-1969. https://doi.org/10.21475/ajcs.20.14.12.2838
  • Song X, Zhou G, He Q, Zhou H. 2020. Stomatal limitations to photosynthesis and their critical water conditions in different growth stages of maize under water stress. Agric Water Manag, 241: 106330. https://doi.org/10.1016/j.agwat.2020.106330
  • Taha RS, Seleiman MF, Alotaibi M, Alhammad BA, Rady MM, Mahdi A. 2020. Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy, 10: 1741. https://doi.org/10.3390/agronomy10111741
  • Taria S, Arora A, Alam B, Kumar S, Yadav A, Kumar S, Kumar M, Anuragi H, Kumar R, Meena S. 2022. Introduction to Plant Nitrogen Metabolism: An overview. In: Kumari R, Bhatnagar S, Kalra C (editors). Advances in plant nitrogen metabolism. CRC Press, pp: 1-18. https://doi.org/10.1201/9781003248361
  • Tavakol E, Jákli B, Cakmak I, Dittert K, Senbayram M. 2021. Optimization of potassium supply under osmotic stress mitigates oxidative damage in barley. Plants, 11: 55.
  • Tavakol E, Jákli B, Cakmak I, Dittert K, Karlovsky P, Pfohl K, Senbayram M. 2018. Optimized potassium nutrition improves plant-water-relations of barley under PEG-induced osmotic stress. Plant Soil, 430: 23-35. https://doi.org/10.1007/s11104-018-3704-8
  • Tighe-Neira R, Alberdi M, Arce-Johnson P, Romero J, Reyes-Díaz M, Rengel Z, Inostroza-Blancheteau C. 2018. Role of Potassium in governing photosynthetic processes and plant yield. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (editors). Plant nutrients and abiotic stress tolerance. Springer Singapore, Singapore, pp: 191-203. https://doi.org/10.1007/978-981-10-9044-8_8
  • Tittal M, Mir RA, Jatav KS, Agarwal RM. 2021. Supplementation of potassium alleviates water stress‐induced changes in sorghum bicolor L. Physiol Plan, 172: 1149-1161. https://doi.org/10.1111/ppl.13306
  • Ul-Allah S, Ijaz M, Nawaz A, Sattar A, Sher A, Naeem M, Shahzad U, Farooq U, Nawaz F, Mahmood K. 2020. Potassium application improves grain yield and alleviates drought susceptibility in diverse maize hybrids. Plants, 9: 75. https://doi.org/10.3390/plants9010075
  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA. 2022. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11: 1620. https://doi.org/10.3390/plants11131620
  • Wang M, Zheng Q, Shen Q, Guo S. 2013. The critical role of potassium in plant stress response. Int J Mol Sci, 14: 7370-7390. https://doi.org/10.3390/ijms14047370
  • Wei X, Han L, Xu N, Sun M, Yang X. 2024. Nitrate nitrogen enhances the efficiency of photoprotection in Leymus chinensis under drought stress. Front Plant Sci, 15: 1348925. https://doi.org/10.3389/fpls.2024.1348925
  • Xu Q, Fu H, Zhu B, Hussain HA, Zhang K, Tian X, Duan M, Xie X, Wang L. 2021. Potassium improves drought stress tolerance in plants by affecting root morphology, root exudates, and microbial diversity. Metabolites, 11: 131. https://doi.org/10.3390/metabo11030131
  • Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. 2021. Response mechanism of plants to drought stress. Horticulturae, 7: 50.
  • Ye JY, Tian WH, Jin CW. 2022. Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. Stress Biol, 2: 4. https://doi.org/10.1007/s44154-021-00030-1
  • Zahoor R, Zhao W, Abid M, Dong H, Zhou Z. 2017. Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress. J Plant Physiol, 215: 30-38. https://doi.org/10.1016/j.jplph.2017.05.001
  • Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. 2023. Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomolecules, 13(10): 1443. https://doi.org/10.3390/biom13101443
  • Zhao W, Liu L, Shen Q, Yang J, Han X, Tian F, Wu J. 2020. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12(8): 1-19. https://doi.org/10.3390/W12082127
  • Zheng J, Xie X, Li C, Wang H, Yu Y, Huang B. 2023. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Int J Phytoremediation, 25: 1596-1613. https://doi.org/10.1080/15226514.2023.2176466
  • Zhong C, Cao X, Hu J, Zhu L, Zhang J, Huang J, Jin Q. 2017. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Front Plant Sci, 8: 1079. https://doi.org/10.3389/fpls.2017.01079
  • Zhu B, Xu Q, Zou Y, Ma S, Zhang X, Xie X, Wang L. 2020. Effect of potassium deficiency on growth, antioxidants, ionome and metabolism in rapeseed under drought stress. Plant Growth Regul, 90: 455-466. https://doi.org/10.1007/s10725-019-00545-8
  • Živanović B, Milić Komić S, Tosti T, Vidović M, Prokić L, Veljović Jovanović S. 2020. Leaf soluble sugars and free amino acids as important components of abscisic acid-Mediated drought response in tomato. Plants, 9: 1147. https://doi.org/10.3390/plants9091147
There are 104 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section Research Articles
Authors

Ferhat Uğurlar 0000-0002-3663-3497

Publication Date January 15, 2025
Submission Date October 25, 2024
Acceptance Date December 4, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Uğurlar, F. (2025). Effect of Potassium Optimization on Wheat Drought Tolerance in Controlled Conditions. Black Sea Journal of Agriculture, 8(1), 51-61. https://doi.org/10.47115/bsagriculture.1573391

                                                  24890