Araştırma Makalesi
BibTex RIS Kaynak Göster

Estimation of Friction Coefficients of Soybean Seeds with Soft Computing Approach

Yıl 2025, Cilt: 8 Sayı: 4, 463 - 475, 15.07.2025
https://doi.org/10.47115/bsagriculture.1683875

Öz

Determination of physical and mechanical properties of agricultural products plays an important role in the usage areas of the products and industrial applications. Correct determination and evaluation of physical and mechanical properties of agricultural products is of critical importance in determining the quality, durability and usage potential of the product. In this study, the relationship between moisture content and friction coefficients of Samsoy variety soybean seed, which is a trial material, was determined in order to contribute to making correct decisions in industrial design and material selection. The central aim of this research is to expose with different moisture contents and friction surfaces well-accepted data-driven models to predict friction coefficients for soybean seed using different soft computing techniques. Determination of friction coefficient of agricultural products is important in terms of design and functionality of equipment used in post-harvest technologies and agricultural applications. In the study, 3 different moisture contents and five different friction surfaces (steel, stainless steel, galvanized sheet, PVC, court fabric) were used. Artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), group method of data handling (GMDH) are used to predict of friction coefficients. The best accuracy values were recorded as GMDH 7-7-1 for seven input and 7-15-1 model for five input structures for kinetic and static friction that were calculated performance criteria R2 = 0.99-0.98, RMSE =0.00004-0.00006 , MSE = 0.00009 -0.00011, respectively. These selected the best models predicted which can be used in the soft computing techniques determined different conditions to estimating the friction coefficient for soybean seeds.

Kaynakça

  • Abdulshahed AM, Longstaff AP, Fletcher S. 2015. The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput, 27: 158-168.
  • Alibaş I, Köksal N. 2015. The effect of moisture content on physical, mechanical and rheological properties of soybean (Glycine max cv. ATAEM-II) seed. Legume Res, 38(3): 324-333.
  • Altuntaş E, Gül EN, Olgaç M. 2021. Farklı soya çeşitlerinde hasat sonrası bazı biyoteknik özelliklerin belirlenmesi. Kahramanmaraş Sütçü İmam Üniv Tarım Doğa Derg, 24(5): 1037-1047.
  • Baek J, Lee E, Kim N, Kim SL, Choi I, Ji H, Chung YS, Choi MS, Moon JK, Kim KH. 2020. High Throughput Phenotyping for Various Traits on Soybean Seeds Using Image Analysis. Sensors, 20(1): 248.
  • Cevher Yeşiloglu E, Yıldırım D, Öztekin YB. 2016. Effect of loading position and storage duration on the mechanical properties of abate fetel pear variety. In: Proc 6th Int Conf Trends Agric Eng (TAE), Prague, Czech Republic, pp: 7-9.
  • Cevher Yeşiloglu E. 2022. Some technical properties of dried Terminalia chebula (kara halile) for use in harvest and post-harvest processing. Ital J Food Sci, 34(4): 33-43.
  • Crossa J, Martini JW, Gianola D, Pérez-Rodríguez P, Jarquin D, Juliana P, Montesinos-López O, Cuevas J. 2019. Deep kernel and deep learning for genome-based prediction of single traits in multienvironment breeding trials. Front Genet, 10: 1-13.
  • Duc NT, Ramlal A, Rajendran A, Raju D, Lal SK, Kumar S, Sahoo RN, Chinnusamy V. 2023. Image-based phenotyping of seed architectural traits and prediction of seed weight using machine learning models in soybean. Front Plant Sci, 14: 1-15.
  • Elizondo D, Hoogenboom G, McClendon RW. 1994. Development of a neural network model to predict daily solar radiation. Agric For Meteorol, 71(1-2): 115-132.
  • Farzaneh V, Bakhshabadi H, Gharekhani M, Ganje M, Farzaneh F, Rashidzadeh S, Carvalho IS. 2017. Application of an adaptive neuro_fuzzy inference system (ANFIS) in the modeling of rapeseeds' oil extraction. J Food Process Eng, 40(6): 1-8.
  • Ghazi B, Jeihouni E, Kalantari Z. 2021. Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran. Arab J Geosci, 14(2): 115.
  • Gorzelany J, Belcar J, Kuźniar P, Niedbała G, Pentoś K. 2022. Modelling of mechanical properties of fresh and stored fruit of large cranberry using multiple linear regression and machine learning. Agriculture, 12(2): 200.
  • Grinberg NF, Orhobor OI, King RD. 2020. An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat. Machine Learning, 109(2): 251-277.
  • Gupta RK, Das SK. 1998. Friction coefficients of sunflower seed and kernel on various structural surfaces. J Agric Eng Res, 71(2): 175-180.
  • Hamad K, Khalil MA, Alozi AR. 2020. Predicting freeway incident duration using machine learning. Int J Intell Transp Syst Res, 18(2): 367-380.
  • Haykin S. 1994. Neural Networks: A Comprehensive Foundation (1st ed.). Prentice Hall PTR, USA, pp:56-69.
  • Ivakhnenko AG. 1970. Heuristic self-organization in problems of engineering cybernetics. Automatica, 6(2): 207-219.
  • Jang JS. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern, 23(3): 665-685.
  • Jayas DS, Paliwa J, Visen NS. 2000. Review paper (AE—automation and emerging technologies): multi-layer neural networks for image analysis of agricultural products. J Agric Eng Res, 77(2): 119-128.
  • Jin YQ, Liu C. 1997. Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks. Int J Remote Sens, 18(4): 971-979.
  • Karimi Y, Prasher SO, McNairn H, Bonnell RB, Dutilleu P, Goel PK. 2005. Classification accuracy of discriminant analysis, artificial neural networks, and decision trees for weed and nitrogen stress detection in corn. Trans ASAE, 48(3): 1261-1268.
  • Kaul M, Hill RL, Walthall C. 2005. Artificial neural networks for corn and soybean yield prediction. Agric Syst, 85(1): 1-18.
  • Khaki S, Wang L. 2019. Crop yield prediction using deep neural networks. Front Plant Sci, 10: 1-10.
  • Khaki S, Pham H, Han Y, Kuhl A, Kent W, Wang L. 2021. Deepcorn: A semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation. Knowl-Based Syst, 218: 1-12.
  • Kim M, Gilley JE. 2008. Artificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areas. Comput Electron Agric, 64(2): 268-275.
  • Küçüktopcu E, Cemek B. 2021. Comparison of neuro-fuzzy and neural networks techniques for estimating ammonia concentration in poultry farms. J Environ Chem Eng, 9(4): 1-8.
  • Kumar A, Srivastav PP, Pravitha M, Hasan M, Mangaraj S, Verma DK. 2022. Comparative study on the optimization and characterization of soybean aqueous extract based composite film using response surface methodology (RSM) and artificial neural network (ANN). Food Packag Shelf Life, 31: 1-18.
  • Lemke F. 1997. Knowledge extraction from data using self-organizing modeling technologies. In: Proc SEAM'97 Conf., pp:56-74.
  • Lu M, AbouRizk SM, Hermann UH. 2001. Sensitivity analysis of neural networks in spool fabrication productivity studies. J Comput Civ Eng, 15(4): 299-308.
  • Lu W, Du R, Niu P, Xing G, Luo H, Deng Y, Shu L. 2022. Soybean yield preharvest prediction based on bean pods and leaves image recognition using deep learning neural network combined with GRNN. Front Plant Sci, 12: 1-11.
  • Majkovič D, O'Kiely P, Kramberger B, Vračko M, Turk J, Pažek K, Rozman Č. 2016. Comparison of using regression modeling and an artificial neural network for herbage dry matter yield forecasting. J Chemom, 30(4): 203-209.
  • Mohammadi Torkashvand A, Ahmadi A, Gómez PA, Maghoumi M. 2019. Using artificial neural network in determining postharvest LIFE of kiwifruit. J Sci Food Agric, 99(13): 5918-5925.
  • Mohammadi Mirik A, Parsaeian M, Rohani A, Lawson S. 2023. Optimizing Linseed (Linum usitatissimum L.) Seed Yield through Agronomic Parameter Modeling via Artificial Neural Networks. Agriculture, 14(1): 25.
  • Mohsenin NN. 1970. Physical properties of plant and animal materials. Gordon and Breach Science Publishers, New York, pp: 51-83.
  • Mohsenin NN. 1980. Thermal properties of foods and agricultural materials. Gordon Breach Sci Publ, New York, USA, pp: 198-224.
  • Mozaffari S, Javadi S, Moghaddam HK, Randhir TO. 2022. Forecasting groundwater levels using a hybrid of support vector regression and particle swarm optimization. Water Resour Manag, 36(6): 1955-1972.
  • Mukerji A, Chatterjee C, Raghuwanshi NS. 2009. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. J Hydrol Eng, 14(6): 647-652.
  • Nariman-Zadeh N, Darvizeh A, Darvizeh M, Gharababaei H. 2002. Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition. J Mater Process Technol, 128(1-3): 80-87.
  • Niedbała G, Kurasiak-Popowska D, Piekutowska M, Wojciechowski T, Kwiatek M, Nawracała J. 2022. Application of artificial neural network sensitivity analysis to identify key determinants of harvesting date and yield of soybean (Glycine max (L.) Merrill) cultivar Augusta. Agriculture, 12(6): 754.
  • Patel MB, Patel JN, Bhilota UM. 2022. Comprehensive modelling of ANN. In: Research anthology on artificial neural network applications. IGI Global, pp: 31-40.
  • Poursaeid M, Poursaeid AH, Shabanlou S. 2022. A comparative study of artificial intelligence models and a statistical method for groundwater level prediction. Water Resour Manag, 36(5): 1499-1519.
  • Sabzi-Nojadeh M, Niedbała G, Younessi-Hamzekhanlu M, Aharizad S, Esmaeilpour M, Abdipour M, Kujawa S, Niazian M. 2021. Modeling the Essential Oil and Trans-Anethole Yield of Fennel (Foeniculum vulgare Mill. var. vulgare) by Application Artificial Neural Network and Multiple Linear Regression Methods. Agriculture, 11(12): 1191.
  • Saiedirad MH, Mirsalehi M. 2010. Prediction of mechanical properties of cumin seed using artificial neural networks. J Texture Stud, 41(1): 34-48.
  • Sahoo S, Jha MK. 2013. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. Hydrogeol J, 21(8): 1865-1887.
  • Samani S, Vadiati M, Azizi F, Zamani E, Kisi O. 2022. Groundwater level simulation using soft computing methods with emphasis on major meteorological components. Water Resour Manag, 36(10): 3627-3647.
  • Savenkov D, Kirischiev O, Kirischieva Y, Vifliantceva T, Mikhailova P, Serduk V. 2019. Static and dynamic friction coefficients of grain crops and mineral materials. In: IOP Conf Ser Earth Environ Sci, 403(1): 012069.
  • Shibata T, Abe T, Tanie K, Nose M. 1996. Skill based motion planning in hierarchical intelligent control of a redundant manipulator. Robot Auton Syst, 18(1-2): 65-73.
  • Shirkole SS, Kengh RN, Nimkar PM. 2011. Moisture dependent physical properties of soybean. Int J Eng Sci Technol, 3(5): 3807-3815.
  • Singh SK, Vidyarthi SK, Tiwari R. 2020. Machine learnt image processing to predict weight and size of rice kernels. J Food Eng, 274: 1-10.
  • Taheri-Rad A, Khojastehpour M, Rohani A, Khoramdel S, Nikkhah A. 2017. Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy, 135: 405-412.
  • Taki M, Ajabshirchi Y, Ranjbar SF, Rohani A, Matloobi M. 2016. Heat transfer and MLP neural network models to predict inside environment variables and energy lost in a semi-solar greenhouse. Energy Build, 110: 314-329.
  • Taşan S. 2023. Estimation of groundwater quality using an integration of water quality index, artificial intelligence methods and GIS: Case study, Central Mediterranean Region of Turkey. Appl Water Sci, 13(1): 15.
  • Tavakoli H, Rajabipour A, Mohtasebi SS. 2009. Moisture-dependent some engineering properties of soybean grains. Agric Eng Int CIGR J, pp:45-56.
  • Waller DL. 2003. Operations Management: A Supply Chain Approach. Cengage Learning Business Press: Boston, MA, USA, pp:12-23.
  • Wang Z, Li J, Zhang C, Fan S. 2023. Development of a general prediction model of moisture content in maize seeds based on LW-NIR hyperspectral imaging. Agriculture, 13(2): 359.
  • Wu SW, Zhou XG, Cao GM, Liu ZY, Wang GD. 2017. The improvement on constitutive modeling of Nb-Ti micro alloyed steel by using intelligent algorithms. Mater Des, 116: 676-685.
  • Yang S, Zheng L, He P, Wu T, Sun S, Wang M. 2021. High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning. Plant Methods, 17(1): 50.
  • Yıldırım D, Küçüktopcu E, Cemek B, Şimşek H. 2023. Comparison of machine learning techniques and spatial distribution of daily reference evapotranspiration in Türkiye. Appl Water Sci, 13(4): 107.
  • Yuan W, Wijewardane NK, Jenkins S, Bai G, Ge Y, Graef GL. 2019. Early prediction of soybean traits through color and texture features of canopy RGB imagery. Sci Rep, 9(1): 1-17.

Estimation of Friction Coefficients of Soybean Seeds with Soft Computing Approach

Yıl 2025, Cilt: 8 Sayı: 4, 463 - 475, 15.07.2025
https://doi.org/10.47115/bsagriculture.1683875

Öz

Determination of physical and mechanical properties of agricultural products plays an important role in the usage areas of the products and industrial applications. Correct determination and evaluation of physical and mechanical properties of agricultural products is of critical importance in determining the quality, durability and usage potential of the product. In this study, the relationship between moisture content and friction coefficients of Samsoy variety soybean seed, which is a trial material, was determined in order to contribute to making correct decisions in industrial design and material selection. The central aim of this research is to expose with different moisture contents and friction surfaces well-accepted data-driven models to predict friction coefficients for soybean seed using different soft computing techniques. Determination of friction coefficient of agricultural products is important in terms of design and functionality of equipment used in post-harvest technologies and agricultural applications. In the study, 3 different moisture contents and five different friction surfaces (steel, stainless steel, galvanized sheet, PVC, court fabric) were used. Artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), group method of data handling (GMDH) are used to predict of friction coefficients. The best accuracy values were recorded as GMDH 7-7-1 for seven input and 7-15-1 model for five input structures for kinetic and static friction that were calculated performance criteria R2 = 0.99-0.98, RMSE =0.00004-0.00006 , MSE = 0.00009 -0.00011, respectively. These selected the best models predicted which can be used in the soft computing techniques determined different conditions to estimating the friction coefficient for soybean seeds.

Kaynakça

  • Abdulshahed AM, Longstaff AP, Fletcher S. 2015. The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput, 27: 158-168.
  • Alibaş I, Köksal N. 2015. The effect of moisture content on physical, mechanical and rheological properties of soybean (Glycine max cv. ATAEM-II) seed. Legume Res, 38(3): 324-333.
  • Altuntaş E, Gül EN, Olgaç M. 2021. Farklı soya çeşitlerinde hasat sonrası bazı biyoteknik özelliklerin belirlenmesi. Kahramanmaraş Sütçü İmam Üniv Tarım Doğa Derg, 24(5): 1037-1047.
  • Baek J, Lee E, Kim N, Kim SL, Choi I, Ji H, Chung YS, Choi MS, Moon JK, Kim KH. 2020. High Throughput Phenotyping for Various Traits on Soybean Seeds Using Image Analysis. Sensors, 20(1): 248.
  • Cevher Yeşiloglu E, Yıldırım D, Öztekin YB. 2016. Effect of loading position and storage duration on the mechanical properties of abate fetel pear variety. In: Proc 6th Int Conf Trends Agric Eng (TAE), Prague, Czech Republic, pp: 7-9.
  • Cevher Yeşiloglu E. 2022. Some technical properties of dried Terminalia chebula (kara halile) for use in harvest and post-harvest processing. Ital J Food Sci, 34(4): 33-43.
  • Crossa J, Martini JW, Gianola D, Pérez-Rodríguez P, Jarquin D, Juliana P, Montesinos-López O, Cuevas J. 2019. Deep kernel and deep learning for genome-based prediction of single traits in multienvironment breeding trials. Front Genet, 10: 1-13.
  • Duc NT, Ramlal A, Rajendran A, Raju D, Lal SK, Kumar S, Sahoo RN, Chinnusamy V. 2023. Image-based phenotyping of seed architectural traits and prediction of seed weight using machine learning models in soybean. Front Plant Sci, 14: 1-15.
  • Elizondo D, Hoogenboom G, McClendon RW. 1994. Development of a neural network model to predict daily solar radiation. Agric For Meteorol, 71(1-2): 115-132.
  • Farzaneh V, Bakhshabadi H, Gharekhani M, Ganje M, Farzaneh F, Rashidzadeh S, Carvalho IS. 2017. Application of an adaptive neuro_fuzzy inference system (ANFIS) in the modeling of rapeseeds' oil extraction. J Food Process Eng, 40(6): 1-8.
  • Ghazi B, Jeihouni E, Kalantari Z. 2021. Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran. Arab J Geosci, 14(2): 115.
  • Gorzelany J, Belcar J, Kuźniar P, Niedbała G, Pentoś K. 2022. Modelling of mechanical properties of fresh and stored fruit of large cranberry using multiple linear regression and machine learning. Agriculture, 12(2): 200.
  • Grinberg NF, Orhobor OI, King RD. 2020. An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat. Machine Learning, 109(2): 251-277.
  • Gupta RK, Das SK. 1998. Friction coefficients of sunflower seed and kernel on various structural surfaces. J Agric Eng Res, 71(2): 175-180.
  • Hamad K, Khalil MA, Alozi AR. 2020. Predicting freeway incident duration using machine learning. Int J Intell Transp Syst Res, 18(2): 367-380.
  • Haykin S. 1994. Neural Networks: A Comprehensive Foundation (1st ed.). Prentice Hall PTR, USA, pp:56-69.
  • Ivakhnenko AG. 1970. Heuristic self-organization in problems of engineering cybernetics. Automatica, 6(2): 207-219.
  • Jang JS. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern, 23(3): 665-685.
  • Jayas DS, Paliwa J, Visen NS. 2000. Review paper (AE—automation and emerging technologies): multi-layer neural networks for image analysis of agricultural products. J Agric Eng Res, 77(2): 119-128.
  • Jin YQ, Liu C. 1997. Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks. Int J Remote Sens, 18(4): 971-979.
  • Karimi Y, Prasher SO, McNairn H, Bonnell RB, Dutilleu P, Goel PK. 2005. Classification accuracy of discriminant analysis, artificial neural networks, and decision trees for weed and nitrogen stress detection in corn. Trans ASAE, 48(3): 1261-1268.
  • Kaul M, Hill RL, Walthall C. 2005. Artificial neural networks for corn and soybean yield prediction. Agric Syst, 85(1): 1-18.
  • Khaki S, Wang L. 2019. Crop yield prediction using deep neural networks. Front Plant Sci, 10: 1-10.
  • Khaki S, Pham H, Han Y, Kuhl A, Kent W, Wang L. 2021. Deepcorn: A semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation. Knowl-Based Syst, 218: 1-12.
  • Kim M, Gilley JE. 2008. Artificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areas. Comput Electron Agric, 64(2): 268-275.
  • Küçüktopcu E, Cemek B. 2021. Comparison of neuro-fuzzy and neural networks techniques for estimating ammonia concentration in poultry farms. J Environ Chem Eng, 9(4): 1-8.
  • Kumar A, Srivastav PP, Pravitha M, Hasan M, Mangaraj S, Verma DK. 2022. Comparative study on the optimization and characterization of soybean aqueous extract based composite film using response surface methodology (RSM) and artificial neural network (ANN). Food Packag Shelf Life, 31: 1-18.
  • Lemke F. 1997. Knowledge extraction from data using self-organizing modeling technologies. In: Proc SEAM'97 Conf., pp:56-74.
  • Lu M, AbouRizk SM, Hermann UH. 2001. Sensitivity analysis of neural networks in spool fabrication productivity studies. J Comput Civ Eng, 15(4): 299-308.
  • Lu W, Du R, Niu P, Xing G, Luo H, Deng Y, Shu L. 2022. Soybean yield preharvest prediction based on bean pods and leaves image recognition using deep learning neural network combined with GRNN. Front Plant Sci, 12: 1-11.
  • Majkovič D, O'Kiely P, Kramberger B, Vračko M, Turk J, Pažek K, Rozman Č. 2016. Comparison of using regression modeling and an artificial neural network for herbage dry matter yield forecasting. J Chemom, 30(4): 203-209.
  • Mohammadi Torkashvand A, Ahmadi A, Gómez PA, Maghoumi M. 2019. Using artificial neural network in determining postharvest LIFE of kiwifruit. J Sci Food Agric, 99(13): 5918-5925.
  • Mohammadi Mirik A, Parsaeian M, Rohani A, Lawson S. 2023. Optimizing Linseed (Linum usitatissimum L.) Seed Yield through Agronomic Parameter Modeling via Artificial Neural Networks. Agriculture, 14(1): 25.
  • Mohsenin NN. 1970. Physical properties of plant and animal materials. Gordon and Breach Science Publishers, New York, pp: 51-83.
  • Mohsenin NN. 1980. Thermal properties of foods and agricultural materials. Gordon Breach Sci Publ, New York, USA, pp: 198-224.
  • Mozaffari S, Javadi S, Moghaddam HK, Randhir TO. 2022. Forecasting groundwater levels using a hybrid of support vector regression and particle swarm optimization. Water Resour Manag, 36(6): 1955-1972.
  • Mukerji A, Chatterjee C, Raghuwanshi NS. 2009. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. J Hydrol Eng, 14(6): 647-652.
  • Nariman-Zadeh N, Darvizeh A, Darvizeh M, Gharababaei H. 2002. Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition. J Mater Process Technol, 128(1-3): 80-87.
  • Niedbała G, Kurasiak-Popowska D, Piekutowska M, Wojciechowski T, Kwiatek M, Nawracała J. 2022. Application of artificial neural network sensitivity analysis to identify key determinants of harvesting date and yield of soybean (Glycine max (L.) Merrill) cultivar Augusta. Agriculture, 12(6): 754.
  • Patel MB, Patel JN, Bhilota UM. 2022. Comprehensive modelling of ANN. In: Research anthology on artificial neural network applications. IGI Global, pp: 31-40.
  • Poursaeid M, Poursaeid AH, Shabanlou S. 2022. A comparative study of artificial intelligence models and a statistical method for groundwater level prediction. Water Resour Manag, 36(5): 1499-1519.
  • Sabzi-Nojadeh M, Niedbała G, Younessi-Hamzekhanlu M, Aharizad S, Esmaeilpour M, Abdipour M, Kujawa S, Niazian M. 2021. Modeling the Essential Oil and Trans-Anethole Yield of Fennel (Foeniculum vulgare Mill. var. vulgare) by Application Artificial Neural Network and Multiple Linear Regression Methods. Agriculture, 11(12): 1191.
  • Saiedirad MH, Mirsalehi M. 2010. Prediction of mechanical properties of cumin seed using artificial neural networks. J Texture Stud, 41(1): 34-48.
  • Sahoo S, Jha MK. 2013. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. Hydrogeol J, 21(8): 1865-1887.
  • Samani S, Vadiati M, Azizi F, Zamani E, Kisi O. 2022. Groundwater level simulation using soft computing methods with emphasis on major meteorological components. Water Resour Manag, 36(10): 3627-3647.
  • Savenkov D, Kirischiev O, Kirischieva Y, Vifliantceva T, Mikhailova P, Serduk V. 2019. Static and dynamic friction coefficients of grain crops and mineral materials. In: IOP Conf Ser Earth Environ Sci, 403(1): 012069.
  • Shibata T, Abe T, Tanie K, Nose M. 1996. Skill based motion planning in hierarchical intelligent control of a redundant manipulator. Robot Auton Syst, 18(1-2): 65-73.
  • Shirkole SS, Kengh RN, Nimkar PM. 2011. Moisture dependent physical properties of soybean. Int J Eng Sci Technol, 3(5): 3807-3815.
  • Singh SK, Vidyarthi SK, Tiwari R. 2020. Machine learnt image processing to predict weight and size of rice kernels. J Food Eng, 274: 1-10.
  • Taheri-Rad A, Khojastehpour M, Rohani A, Khoramdel S, Nikkhah A. 2017. Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy, 135: 405-412.
  • Taki M, Ajabshirchi Y, Ranjbar SF, Rohani A, Matloobi M. 2016. Heat transfer and MLP neural network models to predict inside environment variables and energy lost in a semi-solar greenhouse. Energy Build, 110: 314-329.
  • Taşan S. 2023. Estimation of groundwater quality using an integration of water quality index, artificial intelligence methods and GIS: Case study, Central Mediterranean Region of Turkey. Appl Water Sci, 13(1): 15.
  • Tavakoli H, Rajabipour A, Mohtasebi SS. 2009. Moisture-dependent some engineering properties of soybean grains. Agric Eng Int CIGR J, pp:45-56.
  • Waller DL. 2003. Operations Management: A Supply Chain Approach. Cengage Learning Business Press: Boston, MA, USA, pp:12-23.
  • Wang Z, Li J, Zhang C, Fan S. 2023. Development of a general prediction model of moisture content in maize seeds based on LW-NIR hyperspectral imaging. Agriculture, 13(2): 359.
  • Wu SW, Zhou XG, Cao GM, Liu ZY, Wang GD. 2017. The improvement on constitutive modeling of Nb-Ti micro alloyed steel by using intelligent algorithms. Mater Des, 116: 676-685.
  • Yang S, Zheng L, He P, Wu T, Sun S, Wang M. 2021. High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning. Plant Methods, 17(1): 50.
  • Yıldırım D, Küçüktopcu E, Cemek B, Şimşek H. 2023. Comparison of machine learning techniques and spatial distribution of daily reference evapotranspiration in Türkiye. Appl Water Sci, 13(4): 107.
  • Yuan W, Wijewardane NK, Jenkins S, Bai G, Ge Y, Graef GL. 2019. Early prediction of soybean traits through color and texture features of canopy RGB imagery. Sci Rep, 9(1): 1-17.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarım Makineleri, Hayvansal Üretim (Diğer)
Bölüm Research Articles
Yazarlar

Elçin Yeşiloğlu Cevher 0000-0001-9062-923X

Demet Yıldırım 0009-0001-7635-7474

Gürkan Alp Kağan Gürdil 0000-0001-7764-3977

Erken Görünüm Tarihi 12 Temmuz 2025
Yayımlanma Tarihi 15 Temmuz 2025
Gönderilme Tarihi 25 Nisan 2025
Kabul Tarihi 4 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 4

Kaynak Göster

APA Yeşiloğlu Cevher, E., Yıldırım, D., & Gürdil, G. A. K. (2025). Estimation of Friction Coefficients of Soybean Seeds with Soft Computing Approach. Black Sea Journal of Agriculture, 8(4), 463-475. https://doi.org/10.47115/bsagriculture.1683875

                                                  24890